Equivariant birational geometry

Joint work with Hassett, Kontsevich, Kresch, Pestun, Yang, Zhang
Let K/k be an extension of fields. We will be interested in automorphisms $\text{Aut}(K/k)$ which are trivial on k.
Let K/k be an extension of fields. We will be interested in automorphisms $\text{Aut}(K/k)$ which are trivial on k.

When the extension is finite, obtained by adjoining a root of a polynomial $f \in k[x]$, this is the content of Galois theory.
Kummer theory

Assume that the ground field k contains $\zeta_p = \exp(2\pi i/p)$. Then every Galois extension K/k with

$$\text{Gal}(K/k) \cong \mathbb{Z}/p$$

is given by

$$K = k(\sqrt[p]{\kappa}), \quad \kappa \in k,$$

i.e., all such extensions are parametrized by

$$k^\times / (k^\times)^p.$$
Assume that the ground field k contains $\zeta_p = \exp(2\pi i/p)$. Then every Galois extension K/k with

$$\text{Gal}(K/k) \cong \mathbb{Z}/p$$

is given by

$$K = k(\sqrt[p]{\kappa}), \quad \kappa \in k,$$

i.e., all such extensions are parametrized by

$$k^\times / (k^\times)^p.$$

The Galois group acts via

$$\sqrt[p]{\kappa} \mapsto \zeta_p \sqrt[p]{\kappa}.$$
Assume that the ground field k contains $\zeta_p = \exp(2\pi i / p)$. Then every Galois extension K/k with

$$\text{Gal}(K/k) \cong \mathbb{Z}/p$$

is given by

$$K = k(\sqrt[p]{\kappa}), \quad \kappa \in k,$$

i.e., all such extensions are parametrized by

$$k^\times / (k^\times)^p.$$

The Galois group acts via

$$\sqrt[p]{\kappa} \mapsto \zeta_p^i \sqrt[p]{\kappa}.$$

Proof: via **Hilbert Theorem 90**

$$H^1(\text{Gal}(K/k), K^\times) = 0.$$
We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.
Rationality

We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.

Recall that K/k is

(R) **rational:** if $K \cong k(x_1, \ldots, x_n)$ for some n
We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.

Recall that K/k is

(R) **rational**: if $K \simeq k(x_1, \ldots, x_n)$ for some n

(S) **stably rational**: if $K(x_1, \ldots, x_n)/k$ is rational, for some n
We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.

Recall that K/k is

(R) **rational**: if $K \simeq k(x_1, \ldots, x_n)$ for some n

(S) **stably rational**: if $K(x_1, \ldots, x_n)/k$ is rational, for some n

These are of particular interest.
We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.

Recall that K/k is

(R) **rational**: if $K \cong k(x_1, \ldots, x_n)$ for some n

(S) **stably rational**: if $K(x_1, \ldots, x_n)/k$ is rational, for some n

These are of particular interest. **Why?**
We will be mostly concerned with $k = \mathbb{C}$. This field has no algebraic extensions, but has transcendental extensions.

Recall that K/k is

(R) **rational:** if $K \simeq k(x_1, \ldots, x_n)$ for some n

(S) **stably rational:** if $K(x_1, \ldots, x_n)/k$ is rational, for some n

These are of particular interest. **Why?** They admit many interesting automorphisms:

$$\text{Cr}_n(k) := \text{Aut}(k(x_1, \ldots, x_n)/k).$$
(R) rational: if $X \sim \mathbb{P}^n$ for some n
(R) rational: if $X \sim \mathbb{P}^n$ for some n

(SR) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n
(R) rational: if $X \sim \mathbb{P}^n$ for some n

(SR) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n

I.e., the function field $k(X)$ is rational, or stably rational; it depends on k.
(R) rational: if $X \sim \mathbb{P}^n$ for some n

(SR) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n

i.e., the function field $k(X)$ is rational, or stably rational; it depends on k.

$$(R) \Rightarrow (SR)$$
Equivariant geometry

Let X be a smooth projective algebraic variety over k, equipped with a generically free action of a finite group G. The action is

(L) linear: if $X \sim_G \mathbb{P}(V)$ for some faithful G-representation V, over k,
Equivariant geometry

Let X be a smooth projective algebraic variety over k, equipped with a generically free action of a finite group G. The action is

(L) linear: if $X \sim_G \mathbb{P}(V)$ for some faithful G-representation V, over k,

(SL) stably linear: if $X \times \mathbb{P}^n$ is linear, for some n, with trivial G-action on the second factor.
Let X be a smooth projective algebraic variety over k, equipped with a generically free action of a finite group G. The action is

\begin{itemize}
 \item[(L)] linear: if $X \sim_G \mathbb{P}(V)$ for some faithful G-representation V, over k,
 \item[(SL)] stably linear: if $X \times \mathbb{P}^n$ is linear, for some n, with trivial G-action on the second factor.
\end{itemize}

$(L) \Rightarrow (SL)$
Nonclosed fields and equivariant geometry

There are intriguing connections between arithmetic geometry, i.e., geometry over nonclosed fields and G-equivariant geometry over algebraically closed fields.
There are intriguing connections between arithmetic geometry, i.e., geometry over nonclosed fields and G-equivariant geometry over algebraically closed fields.

This talk will highlight some of these connections.
Let k be a nonclosed field, with absolute Galois group Γ_k, and X a smooth projective variety over k with function field $K := k(X)$. Then Γ_k will act on \bar{X} and on

- special loci,
- geometric Picard group $\text{Pic}(\bar{X})$ and Brauer group $\text{Br}(\bar{X})$, ...
Let k be a nonclosed field, with absolute Galois group Γ_k, and X a smooth projective variety over k with function field $K := k(X)$. Then Γ_k will act on \bar{X} and on

- special loci,
- geometric Picard group $\text{Pic}(\bar{X})$ and Brauer group $\text{Br}(\bar{X})$, ...

Let X be a G-variety, over $k = \mathbb{C}$. Then G will also act on these structures.
Let k be a nonclosed field, with absolute Galois group Γ_k, and X a smooth projective variety over k with function field $K := k(X)$. Then Γ_k will act on \bar{X} and on

- special loci,
- geometric Picard group $\text{Pic}(\bar{X})$ and Brauer group $\text{Br}(\bar{X})$, ...

Let X be a G-variety, over $k = \mathbb{C}$. Then G will also act on these structures.

- Obstruction to stable rationality:

$$H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) \neq 0,$$

for some k'/k.

Let k be a nonclosed field, with absolute Galois group Γ_k, and X a smooth projective variety over k with function field $K := k(X)$. Then Γ_k will act on \bar{X} and on

- special loci,
- geometric Picard group $\text{Pic}(\bar{X})$ and Brauer group $\text{Br}(\bar{X})$, ...

Let X be a G-variety, over $k = \mathbb{C}$. Then G will also act on these structures.

- Obstruction to stable rationality:
 \[H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) \neq 0, \quad \text{for some } k'/k. \]

- Obstruction to stable linearizability:
 \[H^1(G', \text{Pic}(X)) \neq 0, \quad \text{for some } G' \subseteq G. \]
If X is a (stably) rational variety over a nonclosed field k, then $X(k) \neq \emptyset$.
If X is a (stably) rational variety over a nonclosed field k, then $X(k) \neq \emptyset$.

If X is a G-variety, with linearizable G-action, then the G-fixed locus X^G could be **empty**.
If X is a (stably) rational variety over a nonclosed field k, then $X(k) \neq \emptyset$.

If X is a G-variety, with linearizable G-action, then the G-fixed locus X^G could be empty. Existence of fixed points for nonabelian G is not a birational invariant!
If X is a (stably) rational variety over a nonclosed field k, then $X(k) \neq \emptyset$.

If X is a G-variety, with linearizable G-action, then the G-fixed locus X^G could be empty. Existence of fixed points for nonabelian G is not a birational invariant!

There is only one \mathbb{P}^n over every field k. There exist (many) nonbirational linear G-actions!
A word on cohomology

The computation of

$$H^1(\Gamma_k, \text{Pic}(\overline{X}))$$

requires an explicit presentation of $\text{Pic}(\overline{X})$ as a Galois-module.
A word on cohomology

The computation of

$$H^1(\Gamma_k, \text{Pic}(\bar{X}))$$

requires an explicit presentation of $\text{Pic}(\bar{X})$ as a Galois-module.

In the G-context (over an algebraically closed field), this is easier:

Bogomolov-Prokhorov (2013), Shinder (2017)

Let G be cyclic (of order p), acting (regularly) on a smooth rational surface X. If X^G contains a curve of genus $g \geq 1$ then

$$H^1(G, \text{Pic}(X)) = (\mathbb{Z}/p\mathbb{Z})^{2g}.$$
Recall, for schemes (or stacks),

\[\text{Br}(X) := H^2(X, \mathbb{G}_m). \]
Recall, for schemes (or stacks),

\[\text{Br}(X) := H^2(X, \mathbb{G}_m). \]

If \(X \) is smooth projective and rational over \(k \) then

\[\text{Br}(X) = \text{Br}(k). \]
Let X be a rational G-surface over $k = \bar{k}$. There is an exact sequence:

$$0 \to \text{Hom}(G, k^\times) \to \text{Pic}(X, G) \to \text{Pic}(X)^G \xrightarrow{\delta_2(G)} H^2(G, k^\times) \to \text{Br}([X/G]) \to H^1(G, \text{Pic}(X)) \xrightarrow{\delta_3(G)} H^3(G, k^\times).$$
Let X be a rational G-surface over $k = \bar{k}$. There is an exact sequence:

$$
0 \to \text{Hom}(G, k^\times) \to \text{Pic}(X, G) \to \text{Pic}(X)^G \xrightarrow{\delta_2(G)} H^2(G, k^\times) \to \text{Br}([X/G]) \to H^1(G, \text{Pic}(X)) \xrightarrow{\delta_3(G)} H^3(G, k^\times).
$$

Note that:

- Both δ_2 and δ_3 are zero, provided G has a fixed point on X.
Let X be a rational G-surface over $k = \bar{k}$. There is an exact sequence:

$$0 \rightarrow \text{Hom}(G, k^\times) \rightarrow \text{Pic}(X, G) \rightarrow \text{Pic}(X)^G \xrightarrow{\delta_2(G)} H^2(G, k^\times)$$
$$\rightarrow \text{Br}([X/G]) \rightarrow H^1(G, \text{Pic}(X)) \xrightarrow{\delta_3(G)} H^3(G, k^\times).$$

Note that:

- Both δ_2 and δ_3 are zero, provided G has a fixed point on X.
- If G is cyclic, then $H^2(G, k^\times) = 0$.
• The Amitsur group $\text{Am}(\chi, H) = \text{Im}(\delta_2(H)), \quad H \subseteq G,$
• The Amitsur group $\text{Am}(\chi, H) = \text{Im}(\delta_2(H))$, $H \subseteq G$,
• $\text{Im}(\delta_3)$
Let X be a rational surface, over $k = \bar{k}$, of characteristic zero. We produce

- a recipe to compute $\text{Br}([X/G])$,
Let X be a rational surface, over $k = \bar{k}$, of characteristic zero. We produce

- a recipe to compute
 \[\text{Br}([X/G]), \]
- examples of G-actions with nontrivial
 \[\text{Br}([X/G]), \quad H^1(G, \text{Pic}(X)), \quad \delta_3(G). \]
Birational curves are isomorphic.
Birational curves are isomorphic.

In particular,

\[\text{Cr}_1(k) = \text{Aut}(k(x)/k) = \text{Aut}(\mathbb{P}^1_k) = \text{PGL}_2(k). \]
Curves

Birational curves are isomorphic.

In particular,

\[\text{Cr}_1(k) = \text{Aut}(k(x)/k) = \text{Aut}(\mathbb{P}^1_k) = \text{PGL}_2(k). \]

Finite subgroups of \(\text{Cr}_1 \):

- cyclic \(C_n \)
- dihedral \(D_{2n} \)
- \(A_4 \), \(S_4 \), \(A_5 \).
What about arbitrary k?
What about arbitrary k?

In characteristic zero: $Cr_1(k)$ contains

- C_n, D_{2n} iff k contains $\zeta_n + \zeta_n^{-1}$,
What about arbitrary k?

In characteristic zero: $C_{r_1}(k)$ contains

- C_n, D_{2n} iff k contains $\zeta_n + \zeta_n^{-1}$,
- A_4 and S_4 iff -1 is a sum of two squares in k,
Finite subgroups of $Cr_1(k)$

What about arbitrary k?

In characteristic zero: $Cr_1(k)$ contains

- C_n, D_{2n} iff k contains $\zeta_n + \zeta_n^{-1}$,
- A_4 and S_4 iff -1 is a sum of two squares in k,
- A_5 iff -1 is a sum of two squares and 5 is a square in k.
Finite subgroups of $\text{Cr}_1(k)$

What about positive characteristic?
What about positive characteristic?

Beauville (2010), assuming \(\text{char}(k) \) is coprime to \(|G| \):

- it \(k \) is separably closed then two isomorphic subgroups are conjugated,
What about positive characteristic?

Beauville (2010), assuming \(\text{char}(k) \) is coprime to \(|G|\):

- it \(k \) is separably closed then two isomorphic subgroups are conjugated,
- there is only one conjugacy class of \(C_n \), with \(n > 2, A_4, S_4, A_5 \),
What about **positive** characteristic?

Beauville (2010), assuming \(\text{char}(k) \) is **coprime** to \(|G| \):

- it \(k \) is separably closed then two isomorphic subgroups are conjugated,
- there is only one conjugacy class of \(C_n \), with \(n > 2, A_4, S_4, A_5 \),
- \(C_2 \) are parametrized by

\[
k^\times / (k^\times)^2,
\]
What about positive characteristic?

Beauville (2010), assuming char(k) is coprime to $|G|$:

- it k is separably closed then two isomorphic subgroups are conjugated,
- there is only one conjugacy class of C_n, with $n > 2$, A_4, S_4, A_5,
- C_2 are parametrized by $k^\times/(k^\times)^2$,

- similar description for D_n.

Finite subgroups of $C_{r_1}(k)$
What about positive characteristic?

Beauville (2010), assuming \(\text{char}(k) \) is coprime to \(|G|\):

- it \(k \) is separably closed then two isomorphic subgroups are conjugated,
- there is only one conjugacy class of \(C_n \), with \(n > 2, A_4, S_4, A_5, \)
- \(C_2 \) are parametrized by
 \[
k^\times / (k^\times)^2,
\]
- similar description for \(D_n \),
- \(C_2 \oplus C_2 \) are parametrized by subgroups of order 4 in \(k^\times / (k^\times)^2 \), such that for every pair of generators \(a, b \) one has
 \[
 (-a, -b)_2 = 0 \in Br(k), \quad (\text{Hilbert symbol}).
 \]
Over algebraically closed k,

\[\text{rationality} \Leftrightarrow \text{stable rationality}. \]

This equivalence can fail over nonclosed fields k.

Approach via classification: Del Pezzo surfaces, conic bundles, ...
Over nonclosed fields k, the **rationality problem** is also settled:

A geometrically rational surface X over k is rational iff

- $X(k) \neq \emptyset$ and
- $\text{Pic}(\bar{X})$ is a Γ_k-permutation module, generated by (orbits of) classes of exceptional curves.
Over nonclosed fields k, the **rationality problem** is also settled:

A geometrically rational surface X over k is rational iff

- $X(k) \neq \emptyset$ and
- $\text{Pic}(\tilde{X})$ is a Γ_k-permutation module, generated by (orbits of) classes of exceptional curves.

In particular,

$$H^1(\Gamma_{k'}, \text{Pic}(\tilde{X})) = 0,$$

for all k'/k.
Over nonclosed fields k, the **rationality problem** is also settled:

A geometrically rational surface X over k is rational iff

- $X(k) \neq \emptyset$ and
- $\text{Pic}(\tilde{X})$ is a Γ_k-permutation module, generated by (orbits of) classes of exceptional curves.

In particular,

$$H^1(\Gamma_{k'}, \text{Pic}(\tilde{X})) = 0, \quad \text{for all } k'/k.$$

Del Pezzo surfaces of degree ≥ 5 with $X(k) \neq \emptyset$ are rational.
The **stable rationality problem** is still open.
The **stable rationality problem** is still open.

Conjecture

A geometrically rational surface X over k is stably rational iff

- $X(k) \neq \emptyset$ and
- $\text{Pic}(\bar{X})$ is a stably permutation module.
Let X be a DP4 with

$$H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) = 0, \text{ for all } k'/k.$$

Then X is one of the following

- I_0: $x^2 - ay^2 = f_3(s)$, with $\text{disc}(f_3) = a$.
- I_1: e.g., $x^2 - sy^2 = (s - 3)(s + 3)(s^3 + 9)$.
- I_2: e.g., $x^2 - sy^2 = f_2(s) \cdot f_3(s) + \text{conditions}$.
- I_3: e.g., $x^2 - sy^2 = -(s^2 - 3)(s^3 + 3)$.

If X is of type I_0, with $X(k) \neq \emptyset$. Then X is stably rational over k.

Kunyavski, Skorobogatov, Tsfasman (1989)
Kunyavski, Skorobogatov, Tsfasman (1989)

Let X be a DP4 with

$$H^1(\Gamma_k', \text{Pic}(\bar{X})) = 0,$$

for all k'/k.

Then X is one of the following

- l_0: $x^2 - ay^2 = f_3(s)$, with $\text{disc}(f_3) = a$.
- l_1: e.g., $x^2 - sy^2 = (s - 3)(s + 3)(s^3 + 9)$
- l_2: e.g., $x^2 - sy^2 = f_2(s) \cdot f_3(s) + \text{conditions}$
- l_3: e.g., $x^2 - sy^2 = -(s^2 - 3)(s^3 + 3)$.

If X is of type l_0, with $X(k) \neq \emptyset$. Then X is stably rational over k.
Identify subgroups of $W(E_6), W(E_7), W(E_8)$ giving rise to

$$H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) = 0, \quad \text{for all } k'/k.$$
Identify subgroups of $W(E_6)$, $W(E_7)$, $W(E_8)$ giving rise to

$$H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) = 0,$$

for all k'/k.

Let X be a minimal such Del Pezzo surface. Then $d \leq 2$, and

- **deg = 2**: 3 groups (S_3^2, $C_2 \times S_4$, S_5, and their subgroups), 14 types of conic bundles; 3 groups (4 types) of nonconic examples
- **deg = 1**: 3 groups (10 types) of conic bundles

Identify subgroups of $W(E_6)$, $W(E_7)$, $W(E_8)$ giving rise to

$$H^1(\Gamma_{k'}, \text{Pic}(\bar{X})) = 0, \quad \text{for all } k'/k.$$

Let X be a minimal such Del Pezzo surface. Then $d \leq 2$, and

- **deg = 2**: 3 groups (\mathfrak{S}_3^2, $\mathfrak{C}_2 \times \mathfrak{S}_4$, \mathfrak{S}_5, and their subgroups), 14 types of conic bundles; 3 groups (4 types) of nonconic examples
- **deg = 1**: 3 groups (10 types) of conic bundles

There are no cyclic groups on the list! Moreover,

Corollary (strengthening of Segre)

A minimal cubic surface is not stably rational.
Let X be a G-DP surface of degree ≤ 4 such that

- $H^1(G', \text{Pic}(X)) = 0$, for all $G' \subseteq G$,
- $X \not\sim_G \mathbb{P}^2$ or $\mathbb{P}^1 \times \mathbb{P}^1$.

Conjecture: This action is stably linearizable.
Let X be a G-DP surface of degree ≤ 4 such that

- $H^1(G', \text{Pic}(X)) = 0$, for all $G' \subseteq G$,
- $X \not\sim_G \mathbb{P}^2$ or $\mathbb{P}^1 \times \mathbb{P}^1$.

Then X is G-birational to a complete intersection of two quadrics in \mathbb{P}^4,

$$x_1^2 + \zeta x_2^2 + \zeta^2 x_3^2 + x_4^2 = x_1^2 + \zeta^2 x_2^2 + \zeta x_3^2 + x_5^2 = 0,$$

with $\zeta = \zeta_3$, and an action of $G = \mathbb{Z}/3 \rtimes \mathbb{Z}/4$ generated by

$$(x_1, x_2, x_3, x_4, x_5) \mapsto (x_2, x_3, x_1, \zeta x_4, \zeta^2 x_5),$$

$$(x_1, x_2, x_3, x_4, x_5) \mapsto (x_1, x_2, x_3, -x_5, x_4).$$
Let X be a G-DP surface of degree ≤ 4 such that

- $H^1(G', \text{Pic}(X)) = 0$, for all $G' \subseteq G$,
- $X \not\sim^G \mathbb{P}^2$ or $\mathbb{P}^1 \times \mathbb{P}^1$.

Then X is G-birational to a complete intersection of two quadrics in \mathbb{P}^4,

$$x_1^2 + \zeta x_2^2 + \zeta^2 x_3^2 + x_4^2 = x_1^2 + \zeta^2 x_2^2 + \zeta x_3^2 + x_5^2 = 0,$$

with $\zeta = \zeta_3$, and an action of $G = \mathbb{Z}/3 \rtimes \mathbb{Z}/4$ generated by

$$(x_1, x_2, x_3, x_4, x_5) \mapsto (x_2, x_3, x_1, \zeta x_4, \zeta^2 x_5),$$

$$(x_1, x_2, x_3, x_4, x_5) \mapsto (x_1, x_2, x_3, -x_5, x_4).$$

Conjecture

This action is stably linearizable.
In contrast to the situation over nonclosed fields, interesting things happen in degree ≥ 5!
In contrast to the situation over nonclosed fields, interesting things happen in degree ≥ 5!

Study stable linearizability of G-DP surfaces of degree ≥ 5:

- there exist nonlinear but stably linear actions in degrees 8, 6, 5,
In contrast to the situation over nonclosed fields, interesting things happen in degree ≥ 5!

Study stable linearizability of G-DP surfaces of degree ≥ 5:

- there exist nonlinear but stably linear actions in degrees 8, 6, 5,
- complete answer for quadrics.
Assume that \(k = \bar{k} \), and consider \(\text{Aut}(k(\mathbb{P}^2)/k) \):

- **linear**, i.e., elements of \(\text{PGL}_3 \), defined on all points of \(\mathbb{P}^2 \); we have

 \[
 \text{Aut}(\mathbb{P}^2_k) = \text{PGL}_3(k).
 \]
Assume that \(k = \overline{k} \), and consider \(\text{Aut}(k(\mathbb{P}^2))/k) \):

- **linear**, i.e., elements of \(\text{PGL}_3 \), defined on all points of \(\mathbb{P}^2 \); we have

 \[\text{Aut}(\mathbb{P}^2_k) = \text{PGL}_3(k). \]

- **Cremona involution**:

 \[(x : y : z) \mapsto \left(\frac{1}{x} : \frac{1}{y} : \frac{1}{z} \right). \]
Birational automorphisms of \mathbb{P}^2

Assume that $k = \overline{k}$, and consider $\text{Aut}(k(\mathbb{P}^2)/k)$:

- **linear**, i.e., elements of PGL_3, defined on all points of \mathbb{P}^2; we have

 $$\text{Aut}(\mathbb{P}^2_k) = \text{PGL}_3(k).$$

- **Cremona involution**:

 $$\begin{pmatrix} x : y : z \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{x} : \frac{1}{y} : \frac{1}{z} \end{pmatrix}.$$

The **Cremona group**

$$\text{BirAut}(\mathbb{P}^2_k) = \text{Aut}(k(\mathbb{P}^2)/k) = \text{Cr}_2(k),$$

is generated by the maps above.
Solved problem
What are the finite subgroups of PGL_3, up to conjugation?
Solved problem
What are the finite subgroups of PGL_3, up to conjugation?

Recently solved problem
Which finite groups are among subgroups of Cr_2?
Solved problem
What are the finite subgroups of PGL_3, up to conjugation?

Recently solved problem
Which finite groups are among subgroups of Cr_2?

Open problem
What are the finite subgroups of the Cr_2, up to conjugation?
There is an enormous literature concerning Cr_2.
There is an enormous literature concerning Cr_2.

Just a few references:

- Bertini, Castelnuovo, Kantor, . . .
- Beauville, de Fernex (2004) – cyclic subgroups
The plane Cremona group

There is an enormous literature concerning Cr_2.

Just a few references:

- Bertini, Castelnuovo, Kantor, . . .
- Beauville, de Fernex (2004) – cyclic subgroups
There is an enormous literature concerning Cr_2.

Just a few references:

- Bertini, Castelnuovo, Kantor, . . .
- Beauville, de Fernex (2004) – cyclic subgroups
- Dolgachev-Iskovskikh (2006) – classification of finite subgroups,
There is an enormous literature concerning Cr_2.

Just a few references:

- Bertini, Castelnuovo, Kantor, . . .
- Beauville, de Fernex (2004) – cyclic subgroups
- Dolgachev-Iskovskikh (2006) – classification of finite subgroups, , with follow-up work by Prokhorov, Beauville, Ch. Xu, Blanc, ...
The plane Cremona group

There is an enormous literature concerning Cr_2.

Just a few references:

- Bertini, Castelnuovo, Kantor, . . .
- Beauville, de Fernex (2004) – cyclic subgroups
- Dolgachev-Duncan (2014) – classification of groups admitting actions with a fixed point, on some model
• \(R \): Yasinsky (2015) – classification of subgroups of odd order
• \textbf{R}: Yasinsky (2015) – classification of subgroups of odd order

• \textbf{R}: Lamy-Zimmerman (2017) – nontrivial quotients to (many) $\mathbb{Z}/2\mathbb{Z}$
• \mathbb{R}: Yasinsky (2015) – classification of subgroups of odd order
• \mathbb{R}: Lamy-Zimmerman (2017) – nontrivial quotients to (many) $\mathbb{Z}/2\mathbb{Z}$
• \mathbb{R}: Cheltsov-Mangolte-Yasinsky-Zimmerman (2022) – classification of involutions
Cremona group over nonclosed fields

- \mathbb{R}: Yasinsky (2015) – classification of subgroups of odd order
- \mathbb{R}: Lamy-Zimmerman (2017) – nontrivial quotients to (many) $\mathbb{Z}/2\mathbb{Z}$
- \mathbb{R}: Cheltsov-Mangolte-Yasinsky-Zimmerman (2022) – classification of involutions
- \mathbb{F}_q: Genevois, Lonjou, Urech (2021) – connection to cryptography
Usnich/Kontsevich (2008)

Connection to deformation quantization, cluster algebras; study the subgroup

\[\text{Symp}_2(k) \subset \text{Cr}_2(k) \]

preserving the Poisson bracket \(\{x, y\} := xy \).
Proposition 8.2.1: Automorphisms of Cubic Surfaces

Let G be an abelian group of automorphisms of a non-singular cubic surface $S = V(F)$, such that $\text{rk Pic}(S)^G = 1$. Then, up to isomorphism, we are in one of the following cases:

<table>
<thead>
<tr>
<th>name of (G, S)</th>
<th>structure of G</th>
<th>generators of G</th>
<th>equation of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>$\mathbb{Z}/3\mathbb{Z}$</td>
<td>$[\omega : 1 : 1 : 1]$</td>
<td>$w^3 + L_3(x, y, z)$</td>
</tr>
<tr>
<td>3.6.1</td>
<td>$\mathbb{Z}/6\mathbb{Z}$</td>
<td>$[\omega : 1 : 1 : -1]$</td>
<td>$w^3 + x^3 + y^3 + xz^2 + \lambda yz^2$</td>
</tr>
<tr>
<td>3.33.1</td>
<td>$(\mathbb{Z}/3\mathbb{Z})^2$</td>
<td>$[\omega : 1 : 1 : 1], [1 : 1 : 1 : \omega]$</td>
<td>$w^3 + x^3 + y^3 + z^3$</td>
</tr>
<tr>
<td>3.9</td>
<td>$\mathbb{Z}/9\mathbb{Z}$</td>
<td>$[\zeta_9 : 1 : \omega : \omega^2]$</td>
<td>$w^3 + xz^2 + x^2y + y^2z$</td>
</tr>
<tr>
<td>3.33.2</td>
<td>$(\mathbb{Z}/3\mathbb{Z})^2$</td>
<td>$[\omega : 1 : 1 : 1], [1 : 1 : \omega : \omega^2]$</td>
<td>$w^3 + x^3 + y^3 + z^3 + \lambda xyz$</td>
</tr>
<tr>
<td>3.12</td>
<td>$\mathbb{Z}/12\mathbb{Z}$</td>
<td>$[\omega : 1 : -1 : i]$</td>
<td>$w^3 + x^3 + yz^2 + y^2x$</td>
</tr>
<tr>
<td>3.36</td>
<td>$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$</td>
<td>$[\omega : 1 : 1 : 1], [1 : 1 : -1 : \omega]$</td>
<td>$w^3 + x^3 + xy^2 + z^3$</td>
</tr>
<tr>
<td>3.333</td>
<td>$(\mathbb{Z}/3\mathbb{Z})^3$</td>
<td>$[\omega : 1 : 1 : 1], [1 : \omega : 1 : 1]$</td>
<td>$w^3 + x^3 + y^3 + z^3$</td>
</tr>
<tr>
<td>3.6.2</td>
<td>$\mathbb{Z}/6\mathbb{Z}$</td>
<td>$[1 : -1 : \omega : \omega^2]$</td>
<td>$wx^2 + w^3 + y^3 + z^3 + \lambda wxyz$</td>
</tr>
</tbody>
</table>

where L_3 denotes a non-singular form of degree 3, $\lambda \in \mathbb{C}$ is a parameter such that the surface is non-singular and $\omega = e^{2\pi i/3}, \zeta_9 = e^{2\pi i/9}$.

Furthermore, all the cases above are minimal pairs (G, S) with $\text{rk Pic}(S)^G = 1$.
Consider $G := \mathbb{Z}/2 \oplus \mathbb{Z}/4$ generated by

$$(x : y : z) \mapsto (yz : xy : -xz),$$

$$(x : y : z) \mapsto (yz(y - z) : xz(y + z) : xy(y + z)).$$

Then $G \subset C_{r_2}$ is not conjugated to any subgroup of PGL_3 or $\text{PGL}_2 \times \text{PGL}_2$.
Consider $G := \mathbb{Z}/2 \oplus \mathbb{Z}/4$ generated by

$$(x : y : z) \mapsto (yz : xy : -xz),$$

$$(x : y : z) \mapsto (yz(y - z) : xz(y + z) : xy(y + z)).$$

Then $G \subset \text{Cr}_2$ is not conjugated to any subgroup of PGL_3 or $\text{PGL}_2 \times \text{PGL}_2$. This action is not stably linearizable!
Blanc (2006)

Let $G \subset \text{Cr}_2$ be a finite abelian subgroup.
Blanc (2006)

Let $G \subset \text{Cr}_2$ be a finite abelian subgroup. Assume that no element in G fixes a curve of positive genus, in particular

$$H^1(G', \text{Pic}(X)) = 0,$$

for all $G' \subseteq G$.

An example
Let $G \subset C_{r_2}$ be a finite abelian subgroup. Assume that no element in G fixes a curve of positive genus, in particular

$$H^1(G', \text{Pic}(X)) = 0,$$

for all $G' \subseteq G$.

Then either the action is equivariantly conjugated to

$$G \subseteq \text{Aut}(\mathbb{P}^2), \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1),$$

or
Let $G \subseteq \text{Cr}_2$ be a finite abelian subgroup. Assume that no element in G fixes a curve of positive genus, in particular

$$H^1(G', \text{Pic}(X)) = 0, \quad \text{for all } G' \subseteq G.$$

Then either the action is equivariantly conjugated to

$$G \subseteq \text{Aut}(\mathbb{P}^2), \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1),$$

or it is the action above (realized as a regular action on a conic bundle).
Basic strategy:

- The actions are realized as regular actions on \textit{minimal} rational surfaces X,
Basic strategy:

- The actions are realized as regular actions on minimal rational surfaces X,
- By MMP, X is either a Del Pezzo surface or a conic bundle,
Basic strategy:

- The actions are realized as regular actions on \textit{minimal} rational surfaces X,
- By MMP, X is either a Del Pezzo surface or a conic bundle,
- If the (anticanonical) degree is small, the action is \textit{rigid}, and visible via the induced action on the Picard group $\text{Pic}(X)$, i.e., through the Weyl group of the associated root lattice.

\Rightarrow long tables.
<table>
<thead>
<tr>
<th>Type</th>
<th>Order</th>
<th>Structure</th>
<th>$F(T_0, T_1, T_2, T_3)$</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>648</td>
<td>$3^3 : S_4$</td>
<td>$T_0^3 + T_1^3 + T_2^3 + T_3^3$</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>120</td>
<td>S_5</td>
<td>$T_0^2T_1 + T_0T_2^2 + T_2T_3^2 + T_3T_1^2$</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>108</td>
<td>$H_3(3) : 4$</td>
<td>$T_0^3 + T_1^3 + T_2^3 + T_3^3 + 6aT_1T_2T_3$</td>
<td>$20a^3 + 8a^6 = 1$</td>
</tr>
<tr>
<td>IV</td>
<td>54</td>
<td>$H_3(3) : 2$</td>
<td>$T_0^3 + T_1^3 + T_2^3 + T_3^3 + 6aT_1T_2T_3$</td>
<td>$a - a^4 \neq 0$, $8a^3 \neq -1$, $20a^3 + 8a^6 \neq 1$</td>
</tr>
<tr>
<td>V</td>
<td>24</td>
<td>S_4</td>
<td>$T_0^3 + T_0(T_1^2 + T_2^2 + T_3^2)$ $+aT_1T_2T_3$</td>
<td>$9a^3 \neq 8a$, $8a^3 \neq -1$, $a \neq 0$</td>
</tr>
<tr>
<td>VI</td>
<td>12</td>
<td>$S_3 \times 2$</td>
<td>$T_2^3 + T_3^3 + aT_2T_3(T_0 + T_1) + T_0^3 + T_1^3$</td>
<td>$a \neq 0$, $b \neq 0, 1$</td>
</tr>
<tr>
<td>VII</td>
<td>8</td>
<td>8</td>
<td>$T_3^2T_2 + T_2^2T_1 + T_0^3 + T_0T_1^2$</td>
<td>$a \neq 0$</td>
</tr>
<tr>
<td>VIII</td>
<td>6</td>
<td>S_3</td>
<td>$T_2^3 + T_3^3 + aT_2T_3(T_0 + bT_1) + T_0^3 + T_1^3$</td>
<td>$a \neq 0, b \neq 0, 1$</td>
</tr>
<tr>
<td>IX</td>
<td>4</td>
<td>4</td>
<td>$T_3^2T_2 + T_2^2T_1 + T_0^3 + T_0T_1^2 + aT_1^3$</td>
<td>$a \neq 0$</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td>2^2</td>
<td>$T_0^2(T_1 + T_2 + aT_3) + T_1^3 + T_2^3$ $+T_3^3 + 6bT_1T_2T_3$</td>
<td>$8b^3 \neq -1$</td>
</tr>
<tr>
<td>XI</td>
<td>2</td>
<td>2</td>
<td>$T_1^3 + T_2^3 + T_3^3 + 6aT_1T_2T_3$ $+T_0^2(T_1 + bT_2 + cT_3)$</td>
<td>$b^3, c^3 \neq 1$, $b^3 \neq c^3$, $8a^3 \neq -1$,</td>
</tr>
</tbody>
</table>

Table 4. Groups of automorphisms of cubic surfaces.
We do not know whether any two isomorphic non-conjugate subgroups of PGL(3) are conjugate in Cr(2).

9. What is left?

Here we list some problems which have not been yet resolved.

- Find the conjugacy classes in Cr(2) of subgroups of PGL(3). For example, there are two non-conjugate subgroups of PGL(3) isomorphic to A_5 and three to A_6 which differ by an outer automorphism of the groups. Are they conjugate in Cr(2)?
Problem: How to distinguish equivariant birational types of linear actions?
Problem: How to distinguish equivariant birational types of \textbf{linear} actions? How to distinguish linear actions from nonlinear actions?
Problem: How to distinguish equivariant birational types of linear actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

- If X is rational and G is *cyclic*, then $X^G \neq \emptyset$.
Problem: How to distinguish equivariant birational types of linear actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

• If X is rational and G is cyclic, then $X^G \neq \emptyset$.
• If $Y \rightarrow X$ is a G-birational map between smooth projective G-varieties, and G is abelian, then

$$Y^G \neq \emptyset \iff X^G \neq \emptyset.$$
More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p.

Reichstein-Youssin (2002)
More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p. Let

$$\det(a_1, \ldots, a_n) = a_1 \wedge \ldots \wedge a_n \in \wedge^n (G^\vee)$$

be the determinant.
More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p. Let

$$\det(a_1, \ldots, a_n) = a_1 \wedge \ldots \wedge a_n \in \wedge^n (G^\vee)$$

be the determinant.

Reichstein-Youssin (2002)

Let $Y \to X$ be a G-equivariant blowup. Then Y contains a point $q \in Y^G$ (in the preimage of p) with weights $\{b_1, \ldots, b_n\}$ in the tangent space, and such that

$$\det(b_1, \ldots, b_n) = \pm \det(a_1, \ldots, a_n),$$

i.e., this is a **equivariant birational invariant**.
Let V and W be n-dimensional faithful representations of an abelian group G of rank $r \leq n$, and

$$a_1, \ldots, a_n, \text{ respectively } b_1, \ldots, b_n,$$

the characters of G appearing in V, respectively W. Then V and W are G-equivariantly birational if and only if

$$a_1 \wedge \cdots \wedge a_n = \pm b_1 \wedge \cdots \wedge b_n.$$

(This condition is meaningful only when $r = n$.)
Thus, cyclic linear actions on \mathbb{P}^n, with $n \geq 2$, of the same order, are equivariantly birational.
• Thus, cyclic linear actions on \mathbb{P}^n, with $n \geq 2$, of the same order, are equivariantly birational.

• Note that any two faithful representations of G are equivariantly stably birational.
First examples: \(\mathbb{P}^2 \)

Consider an action of \(\mathbb{Z}/p\mathbb{Z} \) on \(X = \mathbb{P}^2 \) given by

\[
(x : y : z) \mapsto (\zeta^a x : \zeta^b y : z),
\]

where \(\zeta = \zeta_p, \quad a, b \in \mathbb{Z}/p\mathbb{Z}, \quad \text{gcd}(a, b, p) = 1, \quad a \neq b. \)

Fixed points are

\[
(0 : 0 : 1), \quad (0 : 1 : 0), \quad (1 : 0 : 0).
\]
Consider an action of $\mathbb{Z}/p\mathbb{Z}$ on $X = \mathbb{P}^2$ given by

$$(x : y : z) \mapsto (\zeta^a x : \zeta^b y : z),$$

where $\zeta = \zeta_p$, $a, b \in \mathbb{Z}/p\mathbb{Z}$, $\gcd(a, b, p) = 1$, $a \neq b$.

Fixed points are

$$(0 : 0 : 1), \quad (0 : 1 : 0), \quad (1 : 0 : 0).$$

Then

$$\beta(X) = [a, b] + [a - b, -b] + [b - a, -a].$$
All such actions are equivalent. Declare $\beta(X) = 0$, i.e.,

$$[a, b] = -[b - a, -a] - [a - b, -b]$$

Allowing

$$[a, b] = -[a, -b]$$

we find

$$[a, b] = [a, b - a] + [a - b, b].$$
both sides of the correspondence (in some sense, quantize the classical mechanical side, while β-deforming the conformal block side):

$$\Psi(a, \varepsilon_1, \varepsilon_2, m; w, q) = \sum_{n \in \Lambda} \Psi(a + \varepsilon_1 n, \varepsilon_1, \varepsilon_2 - \varepsilon_1, m; w, q) Z(a + \varepsilon_2 n, \varepsilon_1 - \varepsilon_2, \varepsilon_2, m, q).$$

(1)

Here $\Psi(a, \varepsilon_1, \varepsilon_2, m; w, q)$, $Z(a, \varepsilon_1, \varepsilon_2, m, q)$ are the conformal blocks of the current algebra and W-algebra, respectively. The natural habitat for (1) is the four dimensional $\mathcal{N} = 2$ supersymmetric Ω-deformed gauge theory, where it is the relation between the (unnormalized) expectation value Ψ of a surface defect located at the surface $z_2 = 0$ with its own couplings w, and the supersymmetric partition function Z of the theory on \mathbb{R}^4, with the bulk coupling q:

$$q = e^{-\frac{8\pi^2}{g^2}} e^{i\theta}.$$

(2)

The relation (1) accompanies the well-known equivariant blowup formula

$$Z(a, \varepsilon_1, \varepsilon_2, m, q) = \sum_{n \in \Lambda} Z(a + \varepsilon_1 n, \varepsilon_1, \varepsilon_2 - \varepsilon_1, m, q) Z(a + \varepsilon_2 n, \varepsilon_1 - \varepsilon_2, \varepsilon_2, m, q).$$

(3)

found in [123].
both sides of the correspondence (in some sense, quantize the classical mechanical side, while β-deforming the conformal block side):

$$\Psi(a, \varepsilon_1, \varepsilon_2, m; w, q) = \sum_{n \in \Lambda} \Psi(a + \varepsilon_1 n, \varepsilon_1, \varepsilon_2 - \varepsilon_1, m; w, q) Z(a + \varepsilon_2 n, \varepsilon_1 - \varepsilon_2, \varepsilon_2, m, q).$$ \hspace{1cm} (1)

Here $\Psi(a, \varepsilon_1, \varepsilon_2, m; w, q)$, $Z(a, \varepsilon_1, \varepsilon_2, m, q)$ are the conformal blocks of the current algebra and \mathcal{W}-algebra, respectively. The natural habitat for (1) is the four dimensional $\mathcal{N} = 2$ supersymmetric Ω-deformed gauge theory, where it is the relation between the (unnormalized) expectation value Ψ of a surface defect located at the surface $z_2 = 0$ with its own couplings w, and the supersymmetric partition function Z of the theory on \mathbb{R}^4, with the bulk coupling q:

$$q = e^{-\frac{8\pi^2}{g^2} e^{i\theta}}.$$ \hspace{1cm} (2)

The relation (1) accompanies the well-known equivariant blowup formula

$$Z(a, \varepsilon_1, \varepsilon_2, m, q) = \sum_{n \in \Lambda} Z(a + \varepsilon_1 n, \varepsilon_1, \varepsilon_2 - \varepsilon_1, m, q) Z(a + \varepsilon_2 n, \varepsilon_1 - \varepsilon_2, \varepsilon_2, m, q)$$ \hspace{1cm} (3)

found in [123].

Birational types \(B_2(\mathbb{Z}/p\mathbb{Z}) \)

Generators: \([a, b], a, b \in \mathbb{Z}/p\mathbb{Z}, \gcd(a, b, p) = 1\)

Relations:

- \([a, b] = [b, a]\)
- \([a, b] = [a, b - a] + [a - b, b]\) if \(a \neq b\)
- \([a, a] = [a, 0]\)
Birational types $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$

Generators: $[a, b], a, b \in \mathbb{Z}/p\mathbb{Z}, \gcd(a, b, p) = 1$

Relations:

- $[a, b] = [b, a]$
- $[a, b] = [a, b - a] + [a - b, b]$ if $a \neq b$
- $[a, a] = [a, 0]$

The \mathbb{Q}-rank of $\mathcal{B}_2(\mathbb{Z}/p\mathbb{Z})$ equals

$$\frac{p^2 - 1}{24} + 1.$$
Let G be a finite **abelian** group, and $A = G^\vee$ its group of characters.
Let G be a finite abelian group, and $A = G^\vee$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action. Consider $X^G = \sqcup F_\alpha$ and record eigenvalues of G

$$[a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

in the tangent space $T_{x_\alpha} X$, at some $x_\alpha \in F_\alpha$.
Let G be a finite \textbf{abelian} group, and $A = G^\vee$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action. Consider $X^G = \bigsqcup F_\alpha$ and record eigenvalues of G

$$[a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

in the tangent space $T_{x_\alpha}X$, at some $x_\alpha \in F_\alpha$. Put

$$\beta(X) := \sum_\alpha [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$
Let G be a finite **abelian** group, and $A = G^\vee$ its group of characters.

Let X be smooth projective, of dimension n, with regular G-action. Consider $X^G = \bigsqcup F_\alpha$ and record eigenvalues of G

$$[a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

in the tangent space $\mathcal{T}_{x_\alpha} X$, at some $x_\alpha \in F_\alpha$. Put

$$\beta(X) := \sum_{\alpha} [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

Here, we keep **no** information about F_α.

Consider the free abelian group

\[S_n(G) \]

spanned by unordered tupels

\[[a_1, \ldots, a_n], \quad a_i \in A, \]
Consider the free abelian group

\[S_n(G) \]

spanned by \textbf{unordered} tuples

\[[a_1, \ldots, a_n], \quad a_i \in A, \]

subject to condition:

\[(G) \sum_i \mathbb{Z}a_i = A, \]
Consider the free abelian group

$$S_n(G)$$

spanned by unordered tupels

$$[a_1, \ldots, a_n], \quad a_i \in A,$$

subject to condition:

$$(G) \sum_i \mathbb{Z}a_i = A,$$

We get a map

$$\{ G\text{-varieties} \} \rightarrow S_n(G)$$

$$X \mapsto \beta(X)$$
Let $Y \to X$ be a G-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$
Birational types $\mathcal{B}_n(G)$

Let $Y \to X$ be a G-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form:
Let $Y \to X$ be a G-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form: Consider the quotient

$$S_n(G) \to B_n(G),$$

by relations
Let $Y \to X$ be a G-equivariant blowup and impose relations:

$$\beta(Y) - \beta(X) = 0.$$

All such relations can be encoded in a compact form: Consider the quotient

$$S_n(G) \to \mathcal{B}_n(G),$$

by relations

(B) for all $a_1, a_2, b_3, \ldots, b_n \in A$ we have

$$[a_1, a_2, b_3, \ldots b_n] =$$

$$[a_1 - a_2, a_2, b_3, \ldots, b_n] + [a_1, a_2 - a_1, b_3, \ldots, b_n] \text{ if } a_1 \neq a_2,$$

$$[a_1, 0, b_3, \ldots, b_n] \quad \text{ if } a_1 = a_2.$$
The class

\[\beta(X) \in \mathcal{B}_n(G) \]

is a well-defined G-equivariant birational invariant.
The class

$$\beta(X) \in B_n(G)$$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization (Abramovich, Karu, Matsuki, Włodarczyk)
Birational types

For $G = \mathbb{Z}/p\mathbb{Z}$ and $n = 2$, we get $\binom{p}{2}$ linear equations in the same number of variables.
For $G = \mathbb{Z}/p\mathbb{Z}$ and $n = 2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

\[
\text{rk}_Q(B_2(G)) = \frac{p^2 - 1}{24} + 1
\]
Birational types

For $G = \mathbb{Z}/p\mathbb{Z}$ and $n = 2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\text{rk}_\mathbb{Q}(\mathcal{B}_2(G)) = \frac{p^2 - 1}{24} + 1$$

For $n \geq 3$ the systems of equations are highly overdetermined.
For $G = \mathbb{Z}/p\mathbb{Z}$ and $n = 2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\text{rk}_Q(\mathcal{B}_2(G)) = \frac{p^2 - 1}{24} + 1$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$\text{rk}_Q(\mathcal{B}_3(G)) = \frac{(p - 5)(p - 7)}{24} = \frac{p^2 - 1}{24} + 1 - \frac{p - 1}{2}$$
For $G = \mathbb{Z}/p\mathbb{Z}$ and $n = 2$, we get $\binom{p}{2}$ linear equations in the same number of variables.

$$\text{rk}_\mathbb{Q}(\mathcal{B}_2(G)) = \frac{p^2 - 1}{24} + 1$$

For $n \geq 3$ the systems of equations are highly overdetermined.

$$\text{rk}_\mathbb{Q}(\mathcal{B}_3(G)) \equiv \frac{(p - 5)(p - 7)}{24} = \frac{p^2 - 1}{24} + 1 - \frac{p - 1}{2}$$

Jumps at

$$p = 43, 59, 67, 83, \ldots$$
Birational types

For \(G = \mathbb{Z}/p\mathbb{Z} \) and \(n = 2 \), we get \(\binom{p}{2} \) linear equations in the same number of variables.

\[
\text{rk}_\mathbb{Q}(\mathcal{B}_2(G)) = \frac{p^2 - 1}{24} + 1
\]

For \(n \geq 3 \) the systems of equations are highly overdetermined.

\[
\text{rk}_\mathbb{Q}(\mathcal{B}_3(G)) \approx \frac{(p - 5)(p - 7)}{24} = \frac{p^2 - 1}{24} + 1 - \frac{p - 1}{2}
\]

Jumps at

\(p = 43, 59, 67, 83, \ldots \)

These are interesting groups!
Variant: introduce the quotient

$$
\mu^- : B_n(G) \rightarrow B_n^-(G)
$$

by an **additional** relation

$$
[a_1, a_2, \ldots, a_n] = -[\overline{a_1}, a_2, \ldots, a_n].
$$
Variant: introduce the quotient

\[\mu^- : \mathcal{B}_n(G) \to \mathcal{B}_n^-(G) \]

by an additional relation

\[[a_1, a_2, \ldots, a_n] = -[-a_1, a_2, \ldots, a_n]. \]

The class of \(\mathbb{P}^n, n \geq 2 \), with linear action of \(G := \mathbb{Z}/N\mathbb{Z} \) is

- **torsion** in \(\mathcal{B}_n(G) \) and
- **trivial** in \(\mathcal{B}_n^-(G) \).
\[B_n^- (G) \otimes \mathbb{Q} \cong H^{n(n-1)/2} (\Gamma(G, n), \text{or}_n) = H_0(\Gamma(G, n), \text{St}_n \otimes \text{or}_n) \]

where

- \(\Gamma(G, n) \subset \text{GL}_n(\mathbb{Z}) \)

 is a *congruence subgroup*,

- or is the orientation (the sign of the determinant), and

- \(\text{St}_n \) is the *Steinberg representation*.
We work over a field k of characteristic zero (with enough roots of 1). Let

$$\text{Burn}_n(G) = \text{Burn}_{n,k}(G)$$

be the \mathbb{Z}-module, generated by symbols

$$(H, Y \acts K, \beta),$$

where
We work over a field k of characteristic zero (with enough roots of 1). Let

$$\text{Burn}_n(G) = \text{Burn}_{n,k}(G)$$

be the \mathbb{Z}-module, generated by symbols

$$(H, Y \trianglelefteq K, \beta),$$

where

- $H \subseteq G$ is an **abelian** subgroup, $Y \subseteq Z_G(H)/H$,
- $K = k(F)$, with generically free Y-action, $\text{trdeg}_k(K) = d \leq n$,
- $\beta = (b_1, \ldots, b_{n-d})$, a sequence, up to order, of **nonzero** elements of H^\vee, that generate H^\vee.
The symbols are subject to **conjugation** and **blowup** relations:

\[(C): (H, Y \subseteq K, \beta) = (H', Y' \subseteq K, \beta'), \text{ when} \]

\[H' = gHg^{-1}, \quad Y' = \cdots, \quad \text{with } g \in G,\]

and β and β' are related by conjugation by g.
The symbols are subject to **conjugation** and **blowup** relations:

C: \((H, Y \triangleleft K, \beta) = (H', Y' \triangleleft K, \beta')\), when

\[
H' = gHg^{-1}, \quad Y' = \cdots, \quad \text{with } g \in G,
\]

and \(\beta\) and \(\beta'\) are related by conjugation by \(g\).

B1: \((H, Y \triangleleft K, \beta) = 0\) when \(b_1 + b_2 = 0\).
Equivariant Burnside group: relations

B2: \((H, Y \subset K, \beta) = \Theta_1 + \Theta_2\), where

\[
\Theta_1 = \begin{cases}
0, & \text{if } b_1 = b_2, \\
(H, Y \subset K, \beta_1) + (H, Y \subset K, \beta_2), & \text{otherwise},
\end{cases}
\]

with

\[
\beta_1 := (b_1, b_2 - b_1, b_3, \ldots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \ldots, b_{n-d}),
\]

and
Equivariant Burnside group: relations

(B2): \((H, Y \varsubsetneq K, \beta) = \Theta_1 + \Theta_2\), where

\[
\Theta_1 = \begin{cases}
0, & \text{if } b_1 = b_2, \\
(H, Y \varsubsetneq K, \beta_1) + (H, Y \varsubsetneq K, \beta_2), & \text{otherwise,}
\end{cases}
\]

with

\[
\beta_1 := (b_1, b_2 - b_1, b_3, \ldots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \ldots, b_{n-d}),
\]

and

\[
\Theta_2 = \begin{cases}
0, & \text{if } b_i \in \langle b_1 - b_2 \rangle \text{ for some } i, \\
(\overline{H}, \overline{Y} \varsubsetneq \overline{K}, \overline{\beta}), & \text{otherwise,}
\end{cases}
\]

with

\[
\overline{H}^\vee := H^\vee / \langle b_1 - b_2 \rangle, \quad \overline{\beta} := (\overline{b}_2, \overline{b}_3, \ldots, \overline{b}_{n-d}), \quad \overline{b}_i \in \overline{H}^\vee.
\]
Model case: Blowing up an isolated point (with abelian stabilizer) on a surface.

It will explain the action of \bar{Y} on $\bar{K} = K(t)$.
Forget the function field of strata with nontrivial stabilizers:

\[\mathcal{B}C_n(G) \]

is generated by symbols

\((H, Y, \beta) \),

subject to relations as in the definition of \(\text{Burn}_n(G) \).
Combinatorial version: properties

• There is a natural homomorphism

\[\text{Burn}_n(G) \to \mathcal{B}C_n(G). \]
• There is a natural homomorphism

\[\text{Burn}_n(G) \rightarrow \mathcal{B}C_n(G). \]

• This group is computable.

• T.– Kaiqi Yang, Zhijia Zhang (2021)

\[\mathcal{B}C_n(G) = \bigoplus_{[H,Y]} \left(\mathcal{B}_n(H) / \text{certain } (H, Y)-\text{conjugation} \right), \]

over conjugacy classes of pairs \((H, Y)\).
Combinatorial version: properties

- There is a natural homomorphism

\[\text{Burn}_n(G) \to \mathcal{B}C_n(G). \]

- This group is computable.

- T.- Kaiqi Yang, Zhijia Zhang (2021)

\[\mathcal{B}C_n(G) = \bigoplus_{[H,Y]} \left(\mathcal{B}_n(H)/\text{certain (}H, Y\text{)-conjugation} \right), \]

over conjugacy classes of pairs \((H, Y)\). For \(G\) abelian, one has

\[\mathcal{B}C_n(G) = \bigoplus_{G' \subseteq G} \bigoplus_{G'' \subseteq G'} \mathcal{B}_n(G''). \]
Equivariant Burnside group

The class

$$[X \ltimes G] \in \text{Burn}_n(G)$$

of a G-variety is computed on a standard model (X, D):

- X is smooth projective, D a normal crossings divisor,
- G acts freely on $U := X \setminus D$,
- for every $g \in G$ and every irreducible component D, either $g(D) = D$ or $g(D) \cap D = \emptyset$.
Equivariant Burnside group

Passing to a standard model X, define:

$$[X \lhd G] := \sum_H \sum_F (H, Y \lhd k(F), \beta_F(X)) \in \text{Burn}_n(G),$$

where the sum is over (conjugacy classes of) abelian subgroups $H \subseteq G$, and all $F \subseteq X$ with generic stabilizer H.
Passing to a standard model X, define:

$$[X \lhd G] := \sum_{H} \sum_{F} (H, Y \subset k(F), \beta_{F}(X)) \in \text{Burn}_{n}(G),$$

where the sum is over (conjugacy classes of) **abelian** subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,

Equivariant Burnside group

Passing to a standard model X, define:

$$[X \leftarrow G] := \sum_{H} \sum_{F} (H, Y \subseteq k(F), \beta_F(X)) \in \text{Burn}_n(G),$$

where the sum is over (conjugacy classes of) \textbf{abelian} subgroups $H \subseteq G$, and all $F \subseteq X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced $Y \subseteq Z_G(H)/H$-action on the function field of the subvariety $F \subseteq X$, with generic stabilizer H,
Equivariant Burnside group

Passing to a standard model X, define:

$$[X \leftrightarrow G] := \sum_H \sum_F (H, Y \subset k(F), \beta_F(X)) \in \text{Burn}_n(G),$$

where the sum is over (conjugacy classes of) \textbf{abelian} subgroups $H \subseteq G$, and all $F \subset X$ with generic stabilizer H.

The symbols record

- the generic stabilizer H,
- the induced $Y \subseteq Z_G(H)/H$-action on the function field of the subvariety $F \subset X$, with generic stabilizer H,
- the (generic) eigenvalues of H in the normal bundle along F.
The class

\[[X \curvearrowright G] \in \text{Burn}_n(G) \]

is a well-defined G-equivariant birational invariant.
Kresch–T. (2020)

The class

$$[X \equiv G] \in \text{Burn}_n(G)$$

is a well-defined G-equivariant birational invariant.

Proof: Equivariant Weak Factorization.
Simplifications arise when we focus on geometric properties of the function fields of strata.
Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

$$\text{Burn}_{n}^{\text{inc}}(G) \subset \text{Burn}_{n}(G),$$

generated by **incompressible divisor symbols**, i.e.,

$$s = (H, Y \subseteq K, \beta), \quad \text{trdeg}_k(K) = n - 1,$$

H is a nontrivial cyclic group and $\beta = (b)$, a single character, generating H^\vee.
Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the function fields of strata; there is a distinguished subgroup

$$\text{Burn}^{\text{inc}}_n(G) \subset \text{Burn}_n(G),$$

generated by incompressible divisor symbols, i.e.,

$$\mathfrak{s} = (H, Y \subset K, \beta), \quad \text{trdeg}_k(K) = n - 1,$$

H is a nontrivial cyclic group and $\beta = (b)$, a single character, generating H^\vee, and such that \mathfrak{s} cannot arise from Θ_2 in relation (B2).
The subgroup

\[\text{Burn}^{\text{inc}}_n(G) \subseteq \text{Burn}_n(G), \]

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).
The subgroup

\[\text{Burn}^{\text{inc}}_n(G) \subseteq \text{Burn}_n(G), \]

is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

\[n = 1 \text{ Every divisor symbol in incompressible.} \]
The subgroup
\[\text{Burn}_{n}^{\text{inc}}(G) \subseteq \text{Burn}_{n}(G), \]
is a direct summand, freely generated by incompressible divisor symbols (modulo conjugation).

\[n = 1 \] Every divisor symbol in incompressible.

\[n = 2 \] A divisor symbol
\[(H, Y \subset K, \beta), \quad \beta = (b), \]
is compressible if and only if \(Y \) is cyclic and \(K = k(t) \).
Incompressibles

We have a projection

\[\text{inc}: \text{Burn}_n(G) \to \text{Burn}_n^{\text{inc}}(G). \]
We have a projection

\[\text{inc}: \text{Burn}_n(G) \to \text{Burn}^{\text{inc}}_n(G). \]

Given an embedding

\[\iota: G \hookrightarrow \text{Cr}_n, \]

we obtain a sum of incompressible divisorial symbols

\[\text{inc}([\iota]) \in \text{Burn}^{\text{inc}}_n(G). \]
Let G be a cyclic group, acting regularly and generically freely on a smooth rational surface over $k = \mathbb{C}$. Then

- $\text{inc}([\iota])$ determines $H^1(G, \text{Pic}(X))$,\]
Let G be a cyclic group, acting regularly and generically freely on a smooth rational surface over $k = \mathbb{C}$. Then

- $\text{inc}([\iota])$ determines $H^1(G, \text{Pic}(X))$,
- $\text{inc}([\iota])$ does not, in general, determine $G \mapsto \text{Cr}_2$.

<table>
<thead>
<tr>
<th>Kresch–T. (2022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a cyclic group, acting regularly and generically freely on a smooth rational surface over $k = \mathbb{C}$. Then</td>
</tr>
<tr>
<td>- $\text{inc}([\iota])$ determines $H^1(G, \text{Pic}(X))$,</td>
</tr>
<tr>
<td>- $\text{inc}([\iota])$ does not, in general, determine</td>
</tr>
<tr>
<td>$G \mapsto \text{Cr}_2$.</td>
</tr>
</tbody>
</table>
Let $G = \langle g \rangle$ be cyclic of order 4, and $X \subset \mathbb{P}(1, 1, 2, 3)$ be

$$w^2 = z^3 + z(ax^4 + bx^2y^2 + cy^4) + xy(a'x^4 + b'x^2y^2 + c'y^4).$$

For general a, b, c, a', b', c', the embeddings

$$\iota, \iota' : G \rightarrow \text{Aut}(X) \subset \text{Cr}_2,$$

where g acts by scalar multiplication on the coordinates w, x, y, z by

$$[i : 1 : -1 : -1], \quad \text{respectively} \quad [-i : 1 : -1 : -1],$$

are not conjugate.
Let $G = \langle g \rangle$ be cyclic of order 4, and $X \subset \mathbb{P}(1, 1, 2, 3)$ be

$$w^2 = z^3 + z(ax^4 + bx^2y^2 + cy^4) + xy(a'x^4 + b'x^2y^2 + c'y^4).$$

For general a, b, c, a', b', c', the embeddings

$$\iota, \iota' : G \to \text{Aut}(X) \subset \text{Cr}_2,$$

where g acts by scalar multiplication on the coordinates w, x, y, z by

$$[i : 1 : -1 : -1], \quad \text{respectively} \quad [-i : 1 : -1 : -1],$$

are not conjugate. But

$$\text{inc}([\iota]) = \text{inc}([\iota']) \in \text{Burn}^\text{inc}_2(G).$$
Basic terminology: a (faithful) representations $G \to \text{GL}(V)$ is called:

- **intransitive**: if it is reducible, **transitive** if it is irreducible;
Applications: Linear actions

Basic terminology: a (faithful) representation $G \to \text{GL}(V)$ is called:

- **intransitive:** if it is reducible, **transitive** if it is irreducible;
- **imprimitive** if it is transitive but contains an intransitive **normal** subgroup G'; in this case G/G' permutes the G' representations;
Basic terminology: a (faithful) representations $G \rightarrow \text{GL}(V)$ is called:

- **intransitive**: if it is reducible, **transitive** if it is irreducible;
- **imprimitive** if it is transitive but contains an intransitive **normal** subgroup G'; in this case G/G' permutes the G' representations;
- **primitive** if it is neither intransitive, nor imprimitive.
\[G \subset k^\times \times \text{GL}_2(k); \]
\(\mathbb{P}^2: \text{intransitive} \)

\[G \subset k^\times \times \text{GL}_2(k); \]

finite subgroups of \(\text{GL}_2 \) arise as binary extensions of subgroups of \(\text{PGL}_2 \), which in turn are:

\[C_n, D_{2n}, A_4, S_4, A_5. \]
Example: Extension of C_3 by $(\mathbb{Z}/n\mathbb{Z})^2$, with the action

$$(\zeta_n x_0, x_1, x_2), \quad (x_0, \zeta_n x_1, x_2), \quad (x_2, x_0, x_1),$$

together with a cyclic permutation of the coordinates.
\mathbb{P}^2: primitive

- \mathfrak{A}_5
- $3^2 : \text{SL}_2(\mathbb{F}_3)$, and two of its subgroups
- $\text{PSL}_2(\mathbb{F}_7)$,
- \mathfrak{A}_6
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Theorem (Sakovics, 2019) Let $G = \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to A_4 or S_4. There are two actions of A_5; they are not conjugated in PGL_3 but are conjugated in Cr_2. On the other hand, different actions of $\text{PSL}_2(F_7)$ are not conjugated in Cr_2. This settles the primitive actions.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathfrak{A}_4 or \mathfrak{S}_4.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathfrak{A}_4 or \mathfrak{S}_4.

There are two actions of \mathfrak{A}_5; they are not conjugated in PGL_3 but are conjugated in Cr_2.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathfrak{A}_4 or \mathfrak{S}_4.

There are two actions of \mathfrak{A}_5; they are not conjugated in PGL_3 but are conjugated in Cr_2. On the other hand, different actions of $\text{PSL}_2(\mathbb{F}_7)$ are not conjugated in Cr_2.

The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to A_4 or S_4.

There are two actions of A_5; they are not conjugated in PGL_3 but are conjugated in Cr_2. On the other hand, different actions of $\text{PSL}_2(\mathbb{F}_7)$ are not conjugated in Cr_2.

This settles the **primitive** actions.
In this case, G contains an abelian subgroup H of rank 2.
In this case, G contains an abelian subgroup H of rank 2. G-birational actions restrict to H-birational actions, which are distinguished by the determinant, up to ±1 (Reichstein-Youssin).
In this case, G contains an abelian subgroup H of rank 2. G-birational actions restrict to H-birational actions, which are distinguished by the determinant, up to ± 1 (Reichstein-Youssin).

This gives examples of nonbirational actions of G, if H contains $\mathbb{Z}/n \oplus \mathbb{Z}/n$ with $n = 5, n \geq 7$.
In this case, G contains an abelian subgroup H of rank 2. G-birational actions restrict to H-birational actions, which are distinguished by the determinant, up to ± 1 (Reichstein-Youssin).

This gives examples of nonbirational actions of G, if H contains $\mathbb{Z}/n \oplus \mathbb{Z}/n$ with $n = 5$, $n \geq 7$.

There are also examples when the Reichstein–Youssin invariant does not distinguish the actions, but the BC_2-class does.
We can assume that
\[G = C_n \times G', \quad n \geq 2, \]
where \(G' \subset \text{GL}_2(k) \) is a lift of \(\bar{G}' \subset \text{PGL}_2(k) \).
We can assume that

\[G = C_n \times G', \quad n \geq 2, \]

where \(G' \subset \text{GL}_2(k) \) is a lift of \(\tilde{G}' \subset \text{PGL}_2(k) \).

- \(G' = C_m \): Actions of cyclic groups on \(\mathbb{P}^1 \) lift to \(\text{GL}_2 \). Thus we have an action of \(G := C_n \times C_m \) on \(\mathbb{P}^2 \). These are birational if and only if the determinants differ by \(\pm 1 \).
We can assume that
\[G = C_n \times G', \quad n \geq 2, \]
where \(G' \subset \text{GL}_2(k) \) is a lift of \(\bar{G}' \subset \text{PGL}_2(k) \).

- \(G' = C_m \): Actions of cyclic groups on \(\mathbb{P}^1 \) lift to \(\text{GL}_2 \). Thus we have an action of \(G := C_n \times C_m \) on \(\mathbb{P}^2 \). These are birational if and only if the determinants differ by \(\pm 1 \).

- \(\bar{G}' = \mathcal{D}_m, \mathfrak{A}_4, \mathfrak{S}_4, \) or \(\mathfrak{A}_5 \). Let \(n \) be such that \(\varphi(n) \geq 3 \). Then \(G \) admits nonbirational actions on \(\mathbb{P}^2 \).
Let ϵ be a primitive character of C_n. Let V be the 2-dimensional representation of G' lifting $\bar{G}' \subset \text{PGL}_2(k)$, and $V_\epsilon := V \otimes \epsilon$.
Let ϵ be a primitive character of C_n. Let V be the 2-dimensional representation of G' lifting $\bar{G}' \subset \text{PGL}_2(k)$, and $V_\epsilon := V \otimes \epsilon$.

This gives a generically free action of G on

$$\mathbb{P}^2 = \mathbb{P}(I \oplus V_\epsilon),$$

with a fixed point p.
Let ϵ be a primitive character of C_n. Let V be the 2-dimensional representation of G' lifting $\bar{G}' \subset \text{PGL}_2(k)$, and $V_\epsilon := V \otimes \epsilon$.

This gives a generically free action of G on

$$\mathbb{P}^2 = \mathbb{P}(I \oplus V_\epsilon),$$

with a fixed point p. To bring the G-action into standard form, we need to blow up p; we extract the classes

$$(C_n, \bar{G}' \subset k(\mathbb{P}^1), (\epsilon)) + (C_n, \bar{G}' \subset k(\mathbb{P}^1), (-\epsilon)),$$

which are incompressible.
Choosing primitive $\epsilon \neq \pm \epsilon'$, we find that

$$[\mathbb{P}(V_\epsilon) \Leftrightarrow G] \neq [\mathbb{P}(V_{\epsilon'}) \Leftrightarrow G] \in \text{Burn}_2(G).$$
Cheltsov–Shramov (2019), Cheltsov–Sarikyan (2022)

Classification of G-rigid and G-solid \mathbb{P}^3,

Let G' be S_4; A_5; $\text{PSL}_2(\mathbb{F}_7)$; or 2. Let C_p be the cyclic group of prime order $p > 7$, and put $G := C_n \cdot G'$. Then there exist embeddings $G, \phi : PGL_4$ that are not conjugated in Cr_3.

Classification of G-rigid and G-solid \mathbb{P}^3, in particular, those that don’t fix a point or leave invariant a pair of skew lines.
Cheltsov–Shramov (2019), Cheltsov–Sarikyan (2022)

Classification of G-rigid and G-solid \mathbb{P}^3, in particular, those that don’t fix a point or leave invariant a pair of skew lines.

Kresch-T. 2021

Let G' be

$$\mathfrak{S}_4, \mathfrak{A}_5, \text{PSL}_2(\mathbb{F}_7), \text{ or } 2\mathfrak{A}_6.$$

Let C_p be the cyclic group of prime order $p > 7$, and put

$$G := C_n \times G'.$$

Then there exist embeddings

$$G \hookrightarrow \text{PGL}_4$$

that are not conjugated in Cr_3.
Proof: Let V be a 3-dimensional representation of G'. Consider faithful G-actions on $\mathbb{P}(I \oplus V_\epsilon)$, where $V_\epsilon := V \otimes \epsilon$, $\epsilon : C_p \to k^\times$. These actions have a G-fixed point.
Proof: Let V be a 3-dimensional representation of G'. Consider faithful G-actions on

$$\mathbb{P}(I \oplus V_\epsilon), \quad V_\epsilon := V \otimes \epsilon, \quad \epsilon : C_p \to k^\times.$$

These actions have a G-fixed point.

After blowing up, we extract incompressible symbols

$$(C_p, \bar{G}' \subset k(\mathbb{P}(V)), (\epsilon)) + (C_p, \bar{G}' \subset k(\mathbb{P}(V)), (-\epsilon)).$$
Proof: Let V be a 3-dimensional representation of G'. Consider faithful G-actions on

$$\mathbb{P}(I \oplus V_\epsilon), \quad V_\epsilon := V \otimes \epsilon, \quad \epsilon : C_p \to k^\times.$$

These actions have a G-fixed point.

After blowing up, we extract incompressible symbols

$$(C_p, \tilde{G}' \subset k(\mathbb{P}(V)), (\epsilon)) + (C_p, \tilde{G}' \subset k(\mathbb{P}(V)), (-\epsilon)).$$

Therefore,

$$[\mathbb{P}(I \oplus V_\epsilon) \subset G] \neq [\mathbb{P}(I \oplus V_{\epsilon'}) \subset G] \in \text{Burn}_3(G),$$

provided

$$\epsilon \neq \pm \epsilon'.$$
Produce linear actions on \mathbb{P}^3 of

$$G = \mathbb{D}_4 \times \mathbb{D}_5,$$

(dihedral groups of order 8 and 10), that leave a pair of two skew lines invariant and are not equivariantly birational.
Produce linear actions on \mathbb{P}^3 of

$$G = \mathbb{D}_4 \times \mathbb{D}_5,$$

(dihedral groups of order 8 and 10), that leave a pair of two skew lines invariant and are not equivariantly birational.

We use

$$\mathcal{BC}_3(G).$$
Summary

- Classification of linear actions of finite groups on \mathbb{P}^2, up to birationality, is still an open problem!
Summary

- Classification of linear actions of finite groups on \mathbb{P}^2, up to birationality, is still an open problem!
- Birational symbols groups
 \[\mathcal{B}_n(G), \quad \mathcal{B}C_n(G), \quad \text{Burn}_n(G) \]
 offer a new approach.