Divisorial stability: openness and cscK metrics

Mattias Jonsson

University of Michigan

MPS Conference on Higher Dimensional Geometry, October 28, 2022

with S. Boucksom
Overview and references

- Consider a projective complex manifold X of dim n with an ample line bundle L.
- Motivating question: \exists cscK metric $\alpha \in c_1(L)$:
 \[\text{Ric}(\alpha) \wedge \alpha^{n-1} = \text{const} \alpha^n. \]
Overview and references

- Consider a projective complex manifold X of dim n with an ample line bundle L.
- Motivating question: $\exists \text{ cscK metric } \alpha \in c_1(L)$:
 \[\text{Ric}(\alpha) \wedge \alpha^{n-1} = \text{const } \alpha^n. \]
- K-stability theory aims to give algebro-geometric criterion for the existence.

References:
- Global pluripotential theory over a trivially valued field, 2022.
Overview and references

- Consider a projective complex manifold X of dim n with an ample line bundle L.
- Motivating question: \exists cscK metric $\alpha \in c_1(L)$:
 \[
 \text{Ric}(\alpha) \wedge \alpha^{n-1} = \text{const} \alpha^n.
 \]
- K-stability theory aims to give algebro-geometric criterion for the existence.
- Goal of talk: develop a notion of divisorial stability of a numerical class $\omega \in \text{Amp}(X)$ s.t.
 (a) $c_1(L)$ divisorially stable $\implies \exists!$ cscK metric in $c_1(L)$;
 (b) divisorial stability is an open condition on ω.

References:
- Global pluripotential theory over a trivially valued field, 2022.
Overview and references

- Consider a projective complex manifold \(X \) of dim \(n \) with an ample line bundle \(L \).
- Motivating question: \(\exists \) cscK metric \(\alpha \in c_1(L) \):
 \[
 \text{Ric}(\alpha) \wedge \alpha^{n-1} = \text{const} \alpha^n.
 \]
- K-stability theory aims to give algebro-geometric criterion for the existence.
- Goal of talk: develop a notion of \textit{divisorial stability} of a numerical class \(\omega \in \text{Amp}(X) \) s.t.
 (a) \(c_1(L) \) divisorially stable \(\implies \exists! \text{ cscK metric in } c_1(L) \);
 (b) divisorial stability is an open condition on \(\omega \).
- Here (a) relies on deep work by C. Li and Chen–Cheng. Conjecturally, converse is true.

References:
- Global pluripotential theory over a trivially valued field, 2022.
Consider a projective complex manifold \(X \) of dim \(n \) with an ample line bundle \(L \).

Motivating question: \(\exists? \) cscK metric \(\alpha \in c_1(L) \):

\[
\text{Ric}(\alpha) \wedge \alpha^{n-1} = \text{const} \, \alpha^n.
\]

K-stability theory aims to give algebro-geometric criterion for the existence.

Goal of talk: develop a notion of divisorial stability of a numerical class \(\omega \in \text{Amp}(X) \) s.t.

(a) \(c_1(L) \) divisorially stable \(\implies \exists! \) cscK metric in \(c_1(L) \);
(b) divisorial stability is an open condition on \(\omega \).

Here (a) relies on deep work by C. Li and Chen–Cheng. Conjecturally, converse is true.

Tool: pluripotential theory on the Berkovich analytification of \(X \). References:

- *Global pluripotential theory over a trivially valued field*, 2022.
Variational approach

- Existence of cscK metric determined by Mabuchi functional

\[M : \mathcal{H} \to \mathbb{R}, \]

where \(\mathcal{H} = \{ \text{Kähler potentials wrt reference Kähler form} \}. \)
Variational approach

- Existence of cscK metric determined by Mabuchi functional
 \[M : \mathcal{H} \to \mathbb{R}, \]
 where \(\mathcal{H} = \{ \text{Kähler potentials wrt reference Kähler form} \}. \)
- By deep results of Darvas–Rubinstein, Berman–D–Lu, Chen–Cheng:
 \[\exists! \text{ cscK metric} \iff M \geq \varepsilon \| \cdot \| - C \quad \text{on } \mathcal{H} \]
 where \(\| \cdot \| \) is a “norm” on \(\mathcal{H} \), e.g. the functionals \(I, J, I - J, \ldots \).
Variational approach

• Existence of cscK metric determined by \textit{Mabuchi functional}

\[M : \mathcal{H} \to \mathbb{R}, \]

where \(\mathcal{H} = \{ \text{Kähler potentials wrt reference Kähler form} \} \).

• By deep results of Darvas–Rubinstein, Berman–D–Lu, Chen–Cheng:

\[\exists ! \text{ cscK metric} \iff M \geq \varepsilon \| \cdot \| - C \text{ on } \mathcal{H} \]

where \(\| \cdot \| \) is a “norm” on \(\mathcal{H} \), e.g. the functionals \(I, J, I - J, \ldots \)

• \(M \) is translation invariant, so via Yau can be viewed as a functional

\[\beta : \{ \text{volume forms on } X \text{ of mass 1} \} \to \mathbb{R}. \]

Same for \(\| \cdot \| \). The space of volume forms is independent of \(L \)!
Variational approach

- Existence of cscK metric determined by *Mabuchi functional*
 \[M : \mathcal{H} \to \mathbb{R}, \]
 where \(\mathcal{H} = \{ \text{Kähler potentials wrt reference Kähler form} \} \).
- By deep results of Darvas–Rubinstein, Berman–D–Lu, Chen–Cheng:
 \[\exists \! \text{ cscK metric } \iff M \geq \varepsilon\| \cdot \| - C \quad \text{on } \mathcal{H} \]
 where \(\| \cdot \| \) is a “norm” on \(\mathcal{H} \), e.g. the functionals \(I, J, I - J, \ldots \)
- \(M \) is translation invariant, so via Yau can be viewed as a functional
 \[\beta : \{ \text{volume forms on } X \text{ of mass 1} \} \to \mathbb{R}. \]
 Same for \(\| \cdot \| \). The space of volume forms is independent of \(L! \)
- By regularization [BDL], can equivalently look at the space of *measures of finite energy*.
Variational approach

- Existence of cscK metric determined by *Mabuchi functional*

\[M: \mathcal{H} \to \mathbb{R}, \]

where \(\mathcal{H} = \{ \text{Kähler potentials wrt reference Kähler form} \} \).

- By deep results of Darvas–Rubinstein, Berman–D–Lu, Chen–Cheng:

\[\exists! \text{ cscK metric } \iff M \geq \varepsilon \| \cdot \| - C \text{ on } \mathcal{H} \]

where \(\| \cdot \| \) is a “norm” on \(\mathcal{H} \), e.g. the functionals \(I, J, I - J, \ldots \)

- \(M \) is translation invariant, so via Yau can be viewed as a functional

\[\beta: \{ \text{volume forms on } X \text{ of mass 1} \} \to \mathbb{R}. \]

Same for \(\| \cdot \| \). The space of volume forms is independent of \(L \! \).

- By regularization [BDL], can equivalently look at the space of *measures of finite energy.*

- Our stability notion mimics this when \(\mathbb{C} \) is *trivially valued* (hence non-Archimedean).
Related work

• Dervan '16 and Boucksom–Hisamoto–J '17 introduced uniform K-stability.
 By BHJ '19:
 \[\exists! \text{cscK metric in } c_1(L) = \Rightarrow (X, L) \text{ uniformly K-stable.} \]

• Chi Li '20 introduced uniform K-stability for filtrations (see later) and proved:
 \[(X, L) \text{ uniformly K-stable for filtrations } = \Rightarrow \exists! \text{cscK metric in } c_1(L). \]

• Goal of our work:
 give a new perspective on Li's stability notion;
 prove it is an open condition on the numerical class \(c_1(L) \);
 comment on the reverse implications.

• Other sources of inspiration:
 The Fano case (. . . , Berman–Boucksom–J '21, Li '22, . . .).
 Valuative stability (Dervan–Legendre, Yaxiong Liu).
 Divisorial stability in the sense of Fujita.
Related work

• Dervan ’16 and Boucksom–Hisamoto–J ’17 introduced *uniform K-stability*. By BHJ ’19:

\[\exists! \text{ cscK metric in } c_1(L) \implies (X, L) \text{ uniformly K-stable.} \]

• Chi Li ’20 introduced *uniform K-stability* for filtrations (see later) and proved:

\[(X, L) \text{ uniformly K-stable for filtrations} \implies \exists! \text{ cscK metric in } c_1(L). \]

• Goal of our work: give a new perspective on Li’s stability notion; prove it is an open condition on the numerical class \(c_1(L) \); comment on the reverse implications.

Related work

- Dervan '16 and Boucksom–Hisamoto–J ’17 introduced uniform K-stability. By BHJ ’19:
 \[\exists ! \text{cscK metric in } c_1(L) \implies (X, L) \text{ uniformly K-stable}. \]

- Chi Li ’20 introduced uniform K-stability for filtrations (see later) and proved:
 \[(X, L) \text{ uniformly K-stable for filtrations} \implies \exists ! \text{cscK metric in } c_1(L). \]
Related work

• Dervan '16 and Boucksom–Hisamoto–J ’17 introduced uniform K-stability. By BHJ ’19:

\[\exists! \text{ cscK metric in } c_1(L) \implies (X, L) \text{ uniformly K-stable.} \]

• Chi Li ’20 introduced uniform K-stability for filtrations (see later) and proved:

\[(X, L) \text{ uniformly K-stable for filtrations } \implies \exists! \text{ cscK metric in } c_1(L). \]

• Goal of our work:

 give a new perspective on Li’s stability notion;
 prove it is an open condition on the numerical class $c_1(L)$;
 comment on the reverse implications.

• Other sources of inspiration:

 Valuative stability (Dervan–Legendre, Yaxiong Liu).
 Divisorial stability in the sense of Fujita.
Related work

• Dervan ’16 and Boucksom–Hisamoto–J ’17 introduced uniform K-stability. By BHJ ’19:

$$\exists! \text{ cscK metric in } c_1(L) \implies (X, L) \text{ uniformly K-stable.}$$

• Chi Li ’20 introduced uniform K-stability for filtrations (see later) and proved:

$$(X, L) \text{ uniformly K-stable for filtrations } \implies \exists! \text{ cscK metric in } c_1(L).$$

• Goal of our work:

 give a new perspective on Li’s stability notion;

 prove it is an open condition on the numerical class $c_1(L)$;

 comment on the reverse implications.

• Other sources of inspiration:

 The Fano case (…, Berman–Boucksom–J ’21, Li ’22, …).

 Valuative stability (Dervan–Legendre, Yaxiong Liu).

 Divisorial stability in the sense of Fujita.
K-stability for filtrations I

• From now on:
 • \(X/\mathbb{C} = \) normal projective variety (or pair) with klt sings, of dimension \(n \);
 • \(L = \) ample \(\mathbb{Q} \)-line bundle on \(X \).

K-stability is typically defined using (ample) test configurations [Tian, Donaldson].

For example, \((X, L)\) is K-semistable iff \(M(X, L) \geq 0 \) for all tcs \((X, L)\).

Here \(M = \) Mabuchi functional (NA version \(\approx \) Donaldson–Futaki invariant).

• Can view a tc as a \(\mathbb{Z} \)-filtration \(F \) of finite type of \(\mathbb{R}(X, dL) \), \(d \) suff. div. . .

• Thus \((X, L)\) is K-semistable iff \(M(\chi) \geq 0 \) for all \(\mathbb{Z} \)-filtrations \(\chi \) of finite type on \(\mathbb{R}(X, dL) \).

• Idea [Székelyhidi]: use general \(\mathbb{Z} \)-filtrations \(\chi \). How to define \(M(\chi) \)?

• Let \(\chi_d = \) induced filtration on \(\mathbb{R}(X, dL) \) generated in degree 1.

• Székelyhidi used \(M(\chi) := \lim d M(\chi_d) \). Unclear if well-behaved. (More on this later.)

• If \(X \) smooth, Li (based on [BJ]) gave a definition of \(M(\chi) \) using NA pluripot theory.

• We give a alternative definition of \(M(\chi) \) that works also in the singular case.
K-stability for filtrations I

• From now on:
 · X/\mathbb{C} = normal projective variety (or pair) with klt sings, of dimension n;
 · L = ample \mathbb{Q}-line bundle on X.

• K-stability is typically defined using (ample) test configurations [Tian, Donaldson].

• Idea [Székelyhidi]: use general \mathbb{Z}-filtrations χ. How to define $M(\chi)$?

• Let χ_d = induced filtration on $\mathbb{R}(X, dL)$ generated in degree 1.

• Székelyhidi used $M(\chi) := \lim d M(\chi_d)$. Unclear if well-behaved. (More on this later.)

• If X smooth, Li (based on [BJ]) gave a definition of $M(\chi)$ using NA pluripot theory.

• We give a alternative definition of $M(\chi)$ that works also in the singular case.
K-stability for filtrations I

- From now on:
 - $X/\mathbb{C} = \text{normal projective variety (or pair) with klt sings, of dimension } n$;
 - $L = \text{ample } \mathbb{Q}\text{-line bundle on } X$.

- K-stability is typically defined using (ample) *test configurations* [Tian, Donaldson].

- For example, (X, L) *K-semistable* iff
 \[M(X, L) \geq 0 \text{ for all tcs } (\mathcal{X}, \mathcal{L}). \]

Here $M = \textit{Mabuchi functional}$ (NA version \approx Donaldson–Futaki invariant).
K-stability for filtrations I

- From now on:
 - \(X / \mathbb{C} \) = normal projective variety (or pair) with klt sings, of dimension \(n \);
 - \(L \) = ample \(\mathbb{Q} \)-line bundle on \(X \).

- K-stability is typically defined using (ample) test configurations [Tian, Donaldson].

- For example, \((X, L)\) \(K \)-semistable iff
 \[
 M(\mathcal{X}, \mathcal{L}) \geq 0 \text{ for all tcs } (\mathcal{X}, \mathcal{L}).
 \]

 Here \(M = Mabuchi \) functional (NA version \(\approx \) Donaldson–Futaki invariant).

- Can view a tc as a \(\mathbb{Z} \)-filtration \(F \) of finite type of \(R(X, dL) \), \(d \) suff. div. . .
 . . . which we view as a function \(\chi : R(X, dL) \setminus \{0\} \to \mathbb{Z} \).
K-stability for filtrations I

- From now on:
 - X/\mathbb{C} = normal projective variety (or pair) with klt sings, of dimension n;
 - L = ample \mathbb{Q}-line bundle on X.
- K-stability is typically defined using (ample) test configurations [Tian, Donaldson].
- For example, (X, L) K-semistable iff
 \[M(\mathcal{X}, \mathcal{L}) \geq 0 \text{ for all tcs } (\mathcal{X}, \mathcal{L}). \]
 Here $M = \text{Mabuchi functional}$ (NA version \approx Donaldson–Futaki invariant).
- Can view a tc as a \mathbb{Z}-filtration F of finite type of $R(X, dL)$, d suff. div.

 ... which we view as a function $\chi: R(X, dL) \setminus \{0\} \to \mathbb{R}$.
- Thus (X, L) is K-semistable iff $M(\chi) \geq 0$ for all \mathbb{Z}-filtrations χ of finite type on $R(X, dL)$.
K-stability for filtrations I

- From now on:
 - $X / \mathbb{C} =$ normal projective variety (or pair) with klt singularities, of dimension n;
 - $L =$ ample \mathbb{Q}-line bundle on X.

- K-stability is typically defined using (ample) *test configurations* [Tian, Donaldson].
- For example, (X, L) *K-semistable* iff
 \[M(X, L) \geq 0 \text{ for all tcs } (\mathcal{X}, \mathcal{L}). \]

Here $M =$ *Mabuchi functional* (NA version \approx Donaldson–Futaki invariant).

- Can view a tc as a \mathbb{Z}-*filtration* F of finite type of $R(X, dL)$, d suff. div.

 ...which we view as a function $\chi : R(X, dL) \setminus \{0\} \to \mathbb{Z}$.

- Thus (X, L) is K-semistable iff $M(\chi) \geq 0$ for all \mathbb{Z}-*filtrations* χ of finite type on $R(X, dL)$.

- Idea [Szekelyhidi]: use general \mathbb{Z}-*filtrations* χ. How to define $M(\chi)$?
K-stability for filtrations I

- From now on:
 - X / \mathbb{C} = normal projective variety (or pair) with klt sing, of dimension n;
 - L = ample \mathbb{Q}-line bundle on X.
- K-stability is typically defined using (ample) test configurations [Tian, Donaldson].
- For example, (X, L) K-semistable iff $M(X, L) \geq 0$ for all tcs $(\mathcal{X}, \mathcal{L})$.
 Here $M = \text{Mabuchi functional}$ (NA version \approx Donaldson–Futaki invariant).
- Can view a tc as a \mathbb{Z}-filtration F of finite type of $R(X, dL)$, d suff. div....
 ...which we view as a function $\chi: R(X, dL) \setminus \{0\} \to \mathbb{Z}$.
- Thus (X, L) is K-semistable iff $M(\chi) \geq 0$ for all \mathbb{Z}-filtrations χ of finite type on $R(X, dL)$.
- Idea [Székelyhidi]: use general \mathbb{Z}-filtrations χ. How to define $M(\chi)$?
- Let $\chi_d = \text{induced filtration on } R(X, dL)$ generated in degree 1.
- Székelyhidi used $M(\chi) := \lim_d M(\chi_d)$. Unclear if well-behaved. (More on this later.)
K-stability for filtrations I

- From now on:
 - \(X / \mathbb{C} \) = normal projective variety (or pair) with klt sings, of dimension \(n \);
 - \(L \) = ample \(\mathbb{Q} \)-line bundle on \(X \).
- K-stability is typically defined using (ample) test configurations [Tian, Donaldson].
- For example, \((X, L) \) \(K \)-semistable iff
 \[
 M(\mathcal{X}, \mathcal{L}) \geq 0 \quad \text{for all tcs } (\mathcal{X}, \mathcal{L}).
 \]
 Here \(M = \text{Mabuchi functional} \) (NA version \(\approx \) Donaldson–Futaki invariant).
- Can view a tc as a \(\mathbb{Z} \)-filtration \(F \) of finite type of \(R(X, dL) \), \(d \) suff. div.
 . . . which we view as a function \(\chi : R(X, dL) \setminus \{0\} \to \mathbb{Z} \).
- Thus \((X, L) \) is \(K \)-semistable iff \(M(\chi) \geq 0 \) for all \(\mathbb{Z} \)-filtrations \(\chi \) of finite type on \(R(X, dL) \).
- Idea [Székelyhidi]: use general \(\mathbb{Z} \)-filtrations \(\chi \). How to define \(M(\chi) \)?
- Let \(\chi_d = \text{induced filtration on } R(X, dL) \) generated in degree 1.
- Székelyhidi used \(M(\chi) := \lim_d M(\chi_d) \). Unclear if well-behaved. (More on this later.)
- If \(X \) smooth, Li (based on [BJ]) gave a definition of \(M(\chi) \) using NA pluripot theory.
K-stability for filtrations I

- From now on:
 - \(X / \mathbb{C} \) = normal projective variety (or pair) with klt sings, of dimension \(n \);
 - \(L = \) ample \(\mathbb{Q} \)-line bundle on \(X \).

- K-stability is typically defined using (ample) *test configurations* [Tian, Donaldson].

- For example, \((X, L)\) *K-semistable* iff
 \[M(X, L) \geq 0 \quad \text{for all tcs } (X, L). \]

 Here \(M = \text{Mabuchi functional} \) (NA version \(\approx \) Donaldson–Futaki invariant).

- Can view a tc as a \(\mathbb{Z} \)-filtration \(F \) of finite type of \(R(X, dL) \), \(d \) suff. div. . .
 \[\ldots \text{which we view as a function } \chi : R(X, dL) \setminus \{0\} \to \mathbb{Z}. \]

- Thus \((X, L)\) is K-semistable iff \(M(\chi) \geq 0 \) for all \(\mathbb{Z} \)-filtrations \(\chi \) of finite type on \(R(X, dL) \).

- Idea [Székelyhidi]: use general \(\mathbb{Z} \)-filtrations \(\chi \). How to define \(M(\chi) \)?

- Let \(\chi_d = \) induced filtration on \(R(X, dL) \) generated in degree 1.

- Székelyhidi used \(M(\chi) := \lim_d M(\chi_d) \). Unclear if well-behaved. (More on this later.)

- If \(X \) smooth, Li (based on [BJ]) gave a definition of \(M(\chi) \) using NA pluripotential theory.

- We give an alternative definition of \(M(\chi) \) that works also in the singular case.
K-stability for filtrations II

- $X^\text{div} = \{\text{divisorial valuations } v : \mathbb{C}(X) \to \mathbb{Q}\}$.
- $X^\text{an} = \text{Berkovich analytification, compactification of } X^\text{div}$.
K-stability for filtrations II

- $X^{\text{div}} = \{\text{divisorial valuations } v: \mathcal{C}(X) \rightarrow \mathbb{Q}\}$.
- $X^{\text{an}} = \text{Berkovich analytification, compactification of } X^{\text{div}}$.
- Any tc $(\mathcal{X}, \mathcal{L})$ induces a finite atomic “Monge–Ampère” measure $\text{MA}(\mathcal{X}, \mathcal{L})$ on X^{div}. For example, if \mathcal{X} normal with central fiber $\mathcal{X}_0 = \sum_i b_i E_i$, then

$$\text{MA}(\mathcal{X}, \mathcal{L}) = \sum_i b_i ((\mathcal{L}|_{E_i})^n) \delta_{v_{E_i}}.$$
K-stability for filtrations II

- $X^\text{div} = \{\text{divisorial valuations } v: \mathbb{C}(X) \to \mathbb{Q}\}$.
- $X^\text{an} = \text{Berkovich analytification, compactification of } X^\text{div}$.
- Any tc $(\mathcal{X}, \mathcal{L})$ induces a finite atomic "Monge–Ampère” measure $\text{MA}(\mathcal{X}, \mathcal{L})$ on X^div. For example, if \mathcal{X} normal with central fiber $\mathcal{X}_0 = \sum_i b_i E_i$, then

$$\text{MA}(\mathcal{X}, \mathcal{L}) = \sum_i b_i ((\mathcal{L}|_{E_i})^n) \delta_{vE_i}.$$

- Our plan:
 - extend the MA operator from the space \mathcal{T} of test configurations to the space $\mathcal{N}_\mathbb{R}$ of arbitrary \mathbb{R}-filtrations; this takes values in a class \mathcal{M}^1 of probability measures on X^an;
K-stability for filtrations II

- $X^{\text{div}} = \{\text{divisorial valuations } v: \mathcal{C}(X) \to \mathbb{Q}\}$.
- $X^{\text{an}} = \text{Berkovich analytification, compactification of } X^{\text{div}}$.
- Any tc $(\mathcal{X}, \mathcal{L})$ induces a finite atomic “Monge–Ampère” measure $\text{MA}(\mathcal{X}, \mathcal{L})$ on X^{div}. For example, if \mathcal{X} normal with central fiber $\mathcal{X}_0 = \sum_i b_i E_i$, then
 \[
 \text{MA}(\mathcal{X}, \mathcal{L}) = \sum_i b_i ((\mathcal{L}|_{E_i})^n)\delta_{v_{E_i}}.
 \]

- Our plan:
 - extend the MA operator from the space \mathcal{T} of test configurations to the space $\mathcal{N}_\mathbb{R}$ of arbitrary \mathbb{R}-filtrations; this takes values in a class \mathcal{M}^1 of probability measures on X^{an};
 - define a functional $\beta: \mathcal{M}^1 \to \mathbb{R} \cup \{+\infty\}$ such that
 \[
 \beta(\text{MA}(\mathcal{X}, \mathcal{L})) = M(\mathcal{X}, \mathcal{L}) \text{ for any tc } (\mathcal{X}, \mathcal{L}).
 \]
The β-invariant on divisorial valuations

• First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
The β-invariant on divisorial valuations

- First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
- Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
- Well defined, by results of Lazarsfeld, L–Mustaţă, Boucksom–Favre–J.
- If X is Fano and $L = -K_X$, then $\beta_L(F) = A(F)$ is (up to a constant) the functional considered by Fujita and Li. Moreover, in this case, X K-semistable $\iff \beta(F) \geq 0$ for all F.
- Dervan–Legendre and Liu used $\beta(F)$ to define valuative stability.
- In general, don't expect to detect K-stability using divisorial valuations alone.
The \(\beta \)-invariant on divisorial valuations

- First define \(\beta \) on Dirac masses \(\delta_v \), with \(v = \text{ord}_F \in X^{\text{div}} \), \(F \) prime divisor over \(X \).
- Log discrepancy \(A(F) \in \mathbb{Z}_{>0} \).
- Set \(V = (L^n) \), and

\[
\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0.
\]

Also denoted \(S(F) \) and called the expected vanishing order of \(\text{ord}_F \).

- Well defined, by results of Lazarsfeld, L–Mustață, Boucksom–Favre–J.
- If \(X \) is Fano and \(L = -K_X \), then \(\beta_L(F) = A(F) - \|F\|_L \) is (up to a constant) the functional considered by Fujita and Li. Moreover, in this case, \(X \) K-semistable \(\iff \beta(F) \geq 0 \) for all \(F \).
- Dervan–Legendre and Liu used \(\beta(F) \) to define valuative stability.
- In general, don't expect to detect K-stability using divisorial valuations alone.
The β-invariant on divisorial valuations

- First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
- Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
- Set $V = (L^n)$, and
 \[\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0. \]
 Also denoted $S(F)$ and called the *expected vanishing order* of ord_F.
- Now define
 \[\beta(F) := A(F) + \left. \frac{d}{dt} \right|_{t=0} \|F\|_{L+tK_X}. \]
The β-invariant on divisorial valuations

• First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
• Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
• Set $V = (L^n)$, and
 \[\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0. \]
 Also denoted $S(F)$ and called the expected vanishing order of ord_F.
• Now define
 \[\beta(F) := A(F) + \frac{d}{dt}\bigg|_{t=0} \|F\|_{L+tK_X}. \]
• Well defined, by results of Lazarsfeld, L–Mustaţă, Boucksom–Favre–J.
The β-invariant on divisorial valuations

- First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
- Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
- Set $V = (L^n)$, and
 \[\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0. \]
 Also denoted $S(F)$ and called the expected vanishing order of ord_F.
- Now define
 \[\beta(F) := A(F) + \frac{d}{dt} \bigg|_{t=0} \|F\|_{L + tK_X}. \]
- Well defined, by results of Lazarsfeld, L–Mustaţă, Boucksom–Favre–J.
- If X is Fano and $L = -K_X$, then $\beta_L(F) = A(F) - \|F\|_L$ is (up to a constant) the functional considered by Fujita and Li. Moreover, in this case,
 \[X \text{ K-semistable } \iff \beta(F) \geq 0 \text{ for all } F. \]
The β-invariant on divisorial valuations

- First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
- Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
- Set $V = (L^n)$, and
 \[\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0. \]
 Also denoted $S(F)$ and called the *expected vanishing order* of ord_F.
- Now define
 \[\beta(F) := A(F) + \left. \frac{d}{dt} \right|_{t=0} \|F\|_{L+tK_X}. \]
- Well defined, by results of Lazarsfeld, L–Mustață, Boucksom–Favre–J.
- If X is Fano and $L = -K_X$, then $\beta_L(F) = A(F) - \|F\|_L$ is (up to a constant) the functional considered by Fujita and Li. Moreover, in this case,
 \[X \text{ K-semistable } \Leftrightarrow \beta(F) \geq 0 \text{ for all } F. \]
- Dervan–Legendre and Liu used $\beta(F)$ to define *valuative stability*.
The β-invariant on divisorial valuations

- First define β on Dirac masses δ_v, with $v = \text{ord}_F \in X^{\text{div}}$, F prime divisor over X.
- Log discrepancy $A(F) \in \mathbb{Z}_{>0}$.
- Set $V = (L^n)$, and
 \[\|F\|_L = \frac{1}{V} \int_0^\infty \text{vol}(L - tF) \, dt > 0. \]
 Also denoted $S(F)$ and called the expected vanishing order of ord_F.
- Now define
 \[\beta(F) := A(F) + \frac{d}{dt} \bigg|_{t=0} \|F\|_{L + tK_X}. \]
- Well defined, by results of Lazarsfeld, L–Mustaţă, Boucksom–Favre–J.
- If X is Fano and $L = -K_X$, then $\beta_L(F) = A(F) - \|F\|_L$ is (up to a constant) the functional considered by Fujita and Li. Moreover, in this case,
 \[X \text{ K-semistable } \iff \beta(F) \geq 0 \text{ for all } F. \]
- Dervan–Legendre and Liu used $\beta(F)$ to define valuative stability.
- In general, don’t expect to detect K-stability using divisorial valuations alone.
Divisorial measures and entropy

- A *divisorial measure* on X is a convex combination

$$\mu = \sum_{i=1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^{\text{div}}, m_i \in \mathbb{R}_{>0}, \sum_i m_i = 1$.
Divisorial measures and entropy

- A *divisorial measure* on X is a convex combination

$$\mu = \sum_{1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^{\text{div}}$, $m_i \in \mathbb{R}_{>0}$, $\sum_i m_i = 1$.

- Set $\mathcal{M}^{\text{div}} := \{ \text{divisorial measures on } X \} \approx \text{volume forms.}$
Divisorial measures and entropy

- A *divisorial measure* on X is a convex combination

$$\mu = \sum_{i=1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^{\text{div}}, \ m_i \in \mathbb{R}_{>0}, \ \sum_i m_i = 1$.

- Set $\mathcal{M}^{\text{div}} := \{ \text{divisorial measures on } X \} \approx \text{volume forms}$.

- **Prop:** \mathcal{M}^{div} is dense in \mathcal{M}, the set of all (Radon) probability measures on X^{an}.
A divisorial measure on X is a convex combination

$$\mu = \sum_{1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^\text{div}$, $m_i \in \mathbb{R}_{>0}$, $\sum_i m_i = 1$.

Set $\mathcal{M}^\text{div} := \{ \text{divisorial measures on } X \} \approx \text{volume forms}$.

Prop: \mathcal{M}^div is dense in \mathcal{M}, the set of all (Radon) probability measures on X^an.

The MA operator $T \to \mathcal{M}^\text{div}$ taking $(\mathcal{X}, \mathcal{L})$ to $\text{MA}(\mathcal{X}, \mathcal{L}) \in \mathcal{M}^\text{div}$ is not surjective.
Divisorial measures and entropy

• A divisorial measure on X is a convex combination

$$\mu = \sum_{1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^{\text{div}}, \ m_i \in \mathbb{R}_{>0}, \ \sum_i m_i = 1$.

• Set $\mathcal{M}^{\text{div}} := \{ \text{divisorial measures on } X \} \approx \text{volume forms}$.

• Prop: \mathcal{M}^{div} is dense in \mathcal{M}, the set of all (Radon) probability measures on X^{an}.

• The MA operator $\mathcal{T} \rightarrow \mathcal{M}^{\text{div}}$ taking $(\mathcal{X}, \mathcal{L})$ to $\text{MA}(\mathcal{X}, \mathcal{L}) \in \mathcal{M}^{\text{div}}$ is not surjective.

• The functional $\mu \mapsto \beta(\mu)$ has an entropy part and an energy part.
Divisorial measures and entropy

• A divisorial measure on X is a convex combination

$$\mu = \sum_{1}^{N} m_i \delta_{v_i},$$

where $v_i = c_i \text{ord}_{F_i} \in X^{\text{div}}$, $m_i \in \mathbb{R}_{>0}$, $\sum_i m_i = 1$.

• Set $\mathcal{M}^{\text{div}} := \{ \text{divisorial measures on } X \} \approx \text{volume forms}.$

• Prop: \mathcal{M}^{div} is dense in \mathcal{M}, the set of all (Radon) probability measures on X^{an}.

• The MA operator $\mathcal{T} \rightarrow \mathcal{M}^{\text{div}}$ taking $(\mathcal{X}, \mathcal{L})$ to $\text{MA} (\mathcal{X}, \mathcal{L}) \in \mathcal{M}^{\text{div}}$ is not surjective.

• The functional $\mu \mapsto \beta (\mu)$ has an entropy part and an energy part.

• The entropy functional $\text{Ent}: \mathcal{M} \rightarrow \mathbb{R}_{\geq 0} \cup \{+\infty\}$ is defined by

$$\text{Ent} (\mu) = \int_{X^{\text{an}}} A (v) \, d\mu (v),$$

where $A: X^{\text{an}} \rightarrow \mathbb{R}_{\geq 0} \cup \{+\infty\}$ is the largest lsc homogeneous function such that $A (\text{ord}_{F}) = A (F)$ for all prime divisors F over X [BFJ, JM, BdFFU, BJ].
The norm of a measure

- To define the *energy part* of $\mu \mapsto \beta(\mu)$ we first define the *norm* of a measure.
The norm of a measure

- To define the *energy part* of $\mu \mapsto \beta(\mu)$ we first define the *norm* of a measure.
- The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a *Legendre transform*, as in [BBEGZ13].
The norm of a measure

- To define the energy part of $\mu \mapsto \beta(\mu)$ we first define the norm of a measure.
- The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a Legendre transform, as in [BBEGZ13].
- $C^0 := C^0(\mathbb{X}^{an})$ continuous functions. Note that $\mathcal{M} \subset (C^0)^\vee$.
The norm of a measure

- To define the energy part of $\mu \mapsto \beta(\mu)$ we first define the norm of a measure.
- The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a Legendre transform, as in [BBEGZ13].
- $C^0 := C^0(X^\text{an})$ continuous functions. Note that $\mathcal{M} \subset (C^0)^\vee$.
- Each tc $(\mathcal{X}, \mathcal{L})$ defines a function $\varphi_{\mathcal{X},\mathcal{L}} \in C^0$. This defines a subset $\mathcal{H} \subset C^0$. We get a functional $E: \mathcal{H} \to \mathbb{Q}$ by
 \[E(\varphi_{\mathcal{X},\mathcal{L}}) := \frac{1}{(n+1)V(L^{n+1})}, \]
 an intersection number on $\overline{\mathcal{X}} \supset \mathcal{X}$.
The norm of a measure

- To define the energy part of $\mu \mapsto \beta(\mu)$ we first define the norm of a measure.
- The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a Legendre transform, as in [BBEGZ13].
- $C^0 := C^0(X^{\text{an}})$ continuous functions. Note that $\mathcal{M} \subset (C^0)^\vee$.
- Each tc $(\mathcal{X}, \mathcal{L})$ defines a function $\varphi_{\mathcal{X}, \mathcal{L}} \in C^0$. This defines a subset $\mathcal{H} \subset C^0$. We get a functional $E: \mathcal{H} \to \mathbb{Q}$ by
 \[
 E(\varphi_{\mathcal{X}, \mathcal{L}}) := \frac{1}{(n+1)V(L^{n+1})},
 \]
 an intersection number on $\bar{\mathcal{X}} \supset \mathcal{X}$.
- Extend this to $E: C^0 \to \mathbb{R}$ by setting
 \[
 E(f) = \sup\{E(\varphi) \mid \varphi \in \mathcal{H}(\omega), \varphi \leq f\}.
 \]
The norm of a measure

- To define the energy part of $\mu \mapsto \beta(\mu)$ we first define the norm of a measure.
- The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a Legendre transform, as in [BBEGZ13].
- $C^0 := C^0(X^{\text{an}})$ continuous functions. Note that $\mathcal{M} \subset (C^0)^\vee$.
- Each tc (X, L) defines a function $\varphi_{X,L} \in C^0$. This defines a subset $\mathcal{H} \subset C^0$. We get a functional $E: \mathcal{H} \to \mathbb{Q}$ by
 \[E(\varphi_{X,L}) := \frac{1}{(n+1)V(L^{n+1})}, \]
 an intersection number on $\overline{X} \supset X$.
- Extend this to $E: C^0 \to \mathbb{R}$ by setting
 \[E(f) = \sup\{E(\varphi) \mid \varphi \in \mathcal{H}(\omega), \varphi \leq f\}. \]
- Define the norm (or energy) $\| \cdot \|_L : \mathcal{M} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ by
 \[\|\mu\|_L = \sup\{E(f) - \int f\mu \mid f \in C^0\} \in \mathbb{R}_{\geq 0} \cup \{+\infty\}. \]
The norm of a measure

• To define the *energy part* of $\mu \mapsto \beta(\mu)$ we first define the *norm* of a measure.

• The norm functional $\mu \mapsto \|\mu\|_L$ is defined as a *Legendre transform*, as in [BBEGZ13].

• $C^0 := C^0(X^\text{an})$ continuous functions. Note that $\mathcal{M} \subset (C^0)^\vee$.

• Each tc $(\mathcal{X}, \mathcal{L})$ defines a function $\varphi_{\mathcal{X}, \mathcal{L}} \in C^0$. This defines a subset $\mathcal{H} \subset C^0$. We get a functional $E: \mathcal{H} \to \mathbb{Q}$ by

$$E(\varphi_{\mathcal{X}, \mathcal{L}}) := \frac{1}{(n+1)V(L^n+1)},$$

an intersection number on $\overline{\mathcal{X}} \supset \mathcal{X}$.

• Extend this to $E: C^0 \to \mathbb{R}$ by setting

$$E(f) = \sup\{E(\varphi) \mid \varphi \in \mathcal{H}(\omega), \varphi \leq f\}.$$

• Define the *norm* (or energy) $\| \cdot \|_L: \mathcal{M} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ by

$$\|\mu\|_L = \sup\{E(f) - \int f \mu \mid f \in C^0\} \in \mathbb{R}_{\geq 0} \cup \{+\infty\}.$$

• If $(\mathcal{X}, \mathcal{L})$ is a tc, then $\|\text{MA}(\mathcal{X}, \mathcal{L})\|$ is the *minimum norm* in the sense of Dervan.
Measures of finite norm

- **Def**: the set of *measures of finite norm* is

 \[\mathcal{M}^1 := \{ \mu \in \mathcal{M} \mid \| \mu \|_L < +\infty \} \subset \mathcal{M}. \]
Measures of finite norm

- **Def**: the set of *measures of finite norm* is

\[\mathcal{M}^1 := \{ \mu \in \mathcal{M} \mid \|\mu\|_L < +\infty \} \subset \mathcal{M}. \]

- **Def**: the *strong topology* on \(\mathcal{M}^1 \subset \mathcal{M} \) is the coarsest refinement of the weak topology such that \(\mu \mapsto \|\mu\|_L \) is continuous.
Measures of finite norm

• **Def:** the set of *measures of finite norm* is

\[\mathcal{M}^1 := \{ \mu \in \mathcal{M} \mid \|\mu\|_L < +\infty \} \subset \mathcal{M}. \]

• **Def:** the *strong topology* on \(\mathcal{M}^1 \subset \mathcal{M} \) is the coarsest refinement of the weak topology such that \(\mu \mapsto \|\mu\|_L \) is continuous.

• **Thm.**
 · The space \(\mathcal{M}^1 \) and the strong topology do not depend on \(L \).
 · \(\mathcal{M}^{\text{div}} \subset \mathcal{M}^1 \) is strongly dense.
 · For any \(\mu \in \mathcal{M}^1 \), the norm \(\|\mu\|_L \) only depends on the numerical class \(\omega = c_1(L) \), and

\[\omega \mapsto \|\mu\|_\omega \]

extends uniquely to a differentiable function on \(\text{Amp}(X) \).
Measures of finite norm

- **Def:** the set of measures of finite norm is
 \[\mathcal{M}^1 := \{ \mu \in \mathcal{M} \mid ||\mu||_L < +\infty \} \subset \mathcal{M}. \]

- **Def:** the strong topology on \(\mathcal{M}^1 \subset \mathcal{M} \) is the coarsest refinement of the weak topology such that \(\mu \mapsto ||\mu||_L \) is continuous.

- **Thm.**
 - The space \(\mathcal{M}^1 \) and the strong topology do not depend on \(L \).
 - \(\mathcal{M}^{\text{div}} \subset \mathcal{M}^1 \) is strongly dense.
 - For any \(\mu \in \mathcal{M}^1 \), the norm \(||\mu||_L \) only depends on the numerical class \(\omega = c_1(L) \), and
 \[\omega \mapsto ||\mu||_\omega \]
 extends uniquely to a differentiable function on \(\text{Amp}(X) \).

- **Proof** involves many applications of the Cauchy–Schwartz inequality, ultimately deriving from the Hodge Index Theorem.
The β-invariant of a measure of finite norm

- For any $\omega \in \text{Amp}(X)$, define a functional $\beta_\omega : M^1 \to \mathbb{R} \cup \{+\infty\}$ by

$$\beta_\omega(\mu) = \text{Ent}(\mu) + \frac{d}{dt} \bigg|_{t=0} \|\mu\|_{\omega-tc_1(X)}.$$
The β-invariant of a measure of finite norm

- For any $\omega \in \text{Amp}(X)$, define a functional $\beta_\omega : M^1 \to \mathbb{R} \cup \{+\infty\}$ by

$$\beta_\omega(\mu) = \text{Ent}(\mu) + \frac{d}{dt}\bigg|_{t=0} \|\mu\|_{\omega-tc_1(X)}.$$

- **Thm.** The function $\omega \mapsto \beta_\omega(\mu)$ is continuous. Now fix an ample \mathbb{Q}-line bundle L.

 - For any prime divisor F over X,
 $$\beta_L(\delta_{\text{ord}_F}) = \beta_L(F).$$

 - For any test configuration $(\mathcal{X}, \mathcal{L})$,
 $$\beta_L(\text{MA}(\mathcal{X}, \mathcal{L})) = M(\mathcal{X}, \mathcal{L}),$$

 the Mabuchi functional as defined by [Boucksom–Hisamoto–J].
Divisorial stability

• **Thm/Def.** The *divisorial stability threshold* is

\[\sigma_{\text{div}}(\omega) := \sup \{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t\|\mu\|_\omega \text{ for all } \mu \in \mathcal{M}^{\text{div}} \} \]

\[= \sup \{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t\|\mu\|_\omega \text{ for all } \mu \in \mathcal{M}^1 \}, \]

• where the second equality follows from strong density of \(\mathcal{M}^{\text{div}} \) in \(\mathcal{M}^1 \).

• **Cor.** \(\omega \mapsto \sigma_{\text{div}}(\omega) \) is continuous.

• **Def.** We say that:

 · \((X, \omega)\) is divisorially semistable if \(\sigma_{\text{div}}(\omega) \geq 0 \);

 · \((X, \omega)\) is (uniformly) divisorially stable if \(\sigma_{\text{div}}(\omega) > 0 \).

• **Cor.** Divisorial stability is an open condition on \(\text{Amp}(X) \).

• **Cor.** \((X, L)\) divisorially stable = \((X, L)\) uniformly K-stable. (More later.)

• **Q.** How does this relate to uniform K-stability for filtrations?
Divisorial stability

- **Thm/Def.** The *divisorial stability threshold* is

\[\sigma_{\text{div}}(\omega) := \sup \{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \| \mu \|_\omega \text{ for all } \mu \in \mathcal{M}^{\text{div}} \} = \sup \{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \| \mu \|_\omega \text{ for all } \mu \in \mathcal{M}^1 \}, \]

- where the second equality follows from strong density of \(\mathcal{M}^{\text{div}} \) in \(\mathcal{M}^1 \).
- **Cor.** \(\omega \mapsto \sigma_{\text{div}}(\omega) \) is continuous.

- **Q.** How does this relate to uniform K-stability for filtrations?
Divisorial stability

• **Thm/Def.** The *divisorial stability threshold* is

\[
σ_{\text{div}}(ω) := \sup \{ t ∈ \mathbb{R} | β_ω(μ) ≥ t∥μ∥_ω \text{ for all } μ ∈ \mathcal{M}^\text{div} \}
\]

\[
= \sup \{ t ∈ \mathbb{R} | β_ω(μ) ≥ t∥μ∥_ω \text{ for all } μ ∈ \mathcal{M}^1 \},
\]

where the second equality follows from strong density of \(\mathcal{M}^\text{div} \) in \(\mathcal{M}^1 \).

• **Cor.** \(ω \mapsto σ_{\text{div}}(ω) \) is continuous.

• **Def.** We say that:

 \((X, ω) \) is *divisorially semistable* if \(σ_{\text{div}}(ω) ≥ 0 \);

 \((X, ω) \) is (uniformly) *divisorially stable* if \(σ_{\text{div}}(ω) > 0 \).
Divisorial stability

• Thm/Def. The divisorial stability threshold is

\[\sigma_{\text{div}}(\omega) := \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t\|\mu\|_\omega \text{ for all } \mu \in \mathcal{M}^{\text{div}} \} \]
\[= \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t\|\mu\|_\omega \text{ for all } \mu \in \mathcal{M}^1 \}, \]

• where the second equality follows from strong density of \(\mathcal{M}^{\text{div}} \) in \(\mathcal{M}^1 \).

• Cor. \(\omega \mapsto \sigma_{\text{div}}(\omega) \) is continuous.

• Def. We say that:

 - \((X, \omega)\) is divisorially semistable if \(\sigma_{\text{div}}(\omega) \geq 0 \);

 - \((X, \omega)\) is (uniformly) divisorially stable if \(\sigma_{\text{div}}(\omega) > 0 \).

• Cor. Divisorial stability is an open condition on \(\text{Amp}(X) \).
Divisorial stability

- **Thm/Def.** The *divisorial stability threshold* is

\[
\sigma_{\text{div}}(\omega) := \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \| \mu \|_\omega \text{ for all } \mu \in \mathcal{M}^{\text{div}} \} = \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \| \mu \|_\omega \text{ for all } \mu \in \mathcal{M}^1 \},
\]

where the second equality follows from strong density of \(\mathcal{M}^{\text{div}} \) in \(\mathcal{M}^1 \).

- **Cor.** \(\omega \mapsto \sigma_{\text{div}}(\omega) \) is continuous.

- **Def.** We say that:
 - \((X, \omega)\) is *divisorially semistable* if \(\sigma_{\text{div}}(\omega) \geq 0 \);
 - \((X, \omega)\) is (uniformly) *divisorially stable* if \(\sigma_{\text{div}}(\omega) > 0 \).

- **Cor.** Divisorial stability is an open condition on \(\text{Amp}(X) \).

- **Cor.** \((X, L)\) divisorially stable \(\implies \) \((X, L)\) uniformly K-stable. (More later.)
Divisorial stability

• **Thm/Def.** The *divisorial stability threshold* is

\[
\sigma_{\text{div}}(\omega) := \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \|\mu\|_\omega \ \text{for all} \ \mu \in M^{\text{div}} \} = \sup\{ t \in \mathbb{R} \mid \beta_\omega(\mu) \geq t \|\mu\|_\omega \ \text{for all} \ \mu \in M^1 \},
\]

• where the second equality follows from strong density of \(M^{\text{div}} \) in \(M^1 \).

• **Cor.** \(\omega \mapsto \sigma_{\text{div}}(\omega) \) is continuous.

• **Def.** We say that:

 • \((X, \omega)\) is *divisorially semistable* if \(\sigma_{\text{div}}(\omega) \geq 0 \);

 • \((X, \omega)\) is (uniformly) *divisorially stable* if \(\sigma_{\text{div}}(\omega) > 0 \).

• **Cor.** Divisorial stability is an open condition on \(\text{Amp}(X) \).

• **Cor.** \((X, L)\) divisorially stable \(\implies \) \((X, L)\) uniformly K-stable. (More later.)

• **Q.** How does this relate to uniform K-stability for filtrations?
K-stability for filtrations

- Fix an ample \mathbb{Q}-line bundle L.

K-stability for filtrations

- Fix an ample \mathbb{Q}-line bundle L.
- Given a filtration $\chi \in N_{\mathbb{R}}$, define $\chi_d \in T$ as the \mathbb{Z}-filtration on $R(X, dL)$ generated in degree 1 by $\lfloor \chi \rfloor$ on $H^0(X, dL)$.
K-stability for filtrations

- Fix an ample \mathbb{Q}-line bundle L.
- Given a filtration $\chi \in \mathcal{N}_\mathbb{R}$, define $\chi_d \in \mathcal{T}$ as the \mathbb{Z}-filtration on $R(X, dL)$ generated in degree 1 by $[\chi]$ on $H^0(X, dL)$.
- **Thm.** The limit $MA(\chi) := \lim_d MA(\chi_d)$ exists in \mathcal{M}^1. The resulting map

$$MA : \mathcal{N}_\mathbb{R} \rightarrow \mathcal{M}^1$$

is not surjective in general, but its image contains \mathcal{M}^{div}.

- **Rmk.** The space of not necessarily ample test configurations for (X, L) defines a subset of $\mathcal{N}_\mathbb{R}$ whose image under MA equals \mathcal{M}^{div}.
- **Def.** Define $M(\chi) := \beta(MA(\chi))$ for $\chi \in \mathcal{N}_\mathbb{R}$. Say (X, L) is uniformly K-stable for filtrations if $\exists \varepsilon > 0$ such that $M(\chi) \geq \varepsilon \|\chi\|$.
- **Advantage.** The divisorial stability notion: the set \mathcal{M}^{div} does not depend on L.

Cor. [Li] Divisorial stability is equivalent to uniform K-stability for filtrations.
K-stability for filtrations

- Fix an ample \mathbb{Q}-line bundle L.
- Given a filtration $\chi \in \mathcal{N}_{\mathbb{R}}$, define $\chi_d \in \mathcal{T}$ as the \mathbb{Z}-filtration on $R(X, dL)$ generated in degree 1 by $[\chi]$ on $H^0(X, dL)$.
- Thm. The limit $\text{MA}(\chi) := \lim_d \text{MA}(\chi_d)$ exists in \mathcal{M}^1. The resulting map
 $$\text{MA}: \mathcal{N}_{\mathbb{R}} \to \mathcal{M}^1$$
 is not surjective in general, but its image contains \mathcal{M}^div.
- Rmk. The space of *not necessarily ample* test configurations for (X, L) defines a subset of $\mathcal{N}_{\mathbb{R}}$ whose image under MA equals \mathcal{M}^div.
K-stability for filtrations

- Fix an ample \(\mathbb{Q} \)-line bundle \(L \).
- Given a filtration \(\chi \in \mathcal{N}_\mathbb{R} \), define \(\chi_d \in \mathcal{T} \) as the \(\mathbb{Z} \)-filtration on \(R(X, dL) \) generated in degree 1 by \(\lfloor \chi \rfloor \) on \(H^0(X, dL) \).
- **Thm.** The limit \(MA(\chi) := \lim_d MA(\chi_d) \) exists in \(\mathcal{M}^1 \). The resulting map

\[
MA : \mathcal{N}_\mathbb{R} \to \mathcal{M}^1
\]

is not surjective in general, but its image contains \(\mathcal{M}^{\text{div}} \).
- **Rmk.** The space of *not necessarily ample* test configurations for \((X, L) \) defines a subset of \(\mathcal{N}_\mathbb{R} \) whose image under \(MA \) equals \(\mathcal{M}^{\text{div}} \).
- Define \(M(\chi) := \beta(MA(\chi)) \) for \(\chi \in \mathcal{N}_\mathbb{R} \). Say \((X, L) \) is *uniformly K-stable for filtrations* if \(\exists \varepsilon > 0 \) such that \(M(\chi) \geq \varepsilon \| \chi \| \).
K-stability for filtrations

- Fix an ample \(\mathbb{Q}\)-line bundle \(L\).
- Given a filtration \(\chi \in \mathcal{N}_\mathbb{R}\), define \(\chi_d \in \mathcal{T}\) as the \(\mathbb{Z}\)-filtration on \(R(X, dL)\) generated in degree 1 by \([\chi]\) on \(H^0(X, dL)\).
- Thm. The limit \(\text{MA}(\chi) := \lim_d \text{MA}(\chi_d)\) exists in \(\mathcal{M}^1\). The resulting map

\[
\text{MA}: \mathcal{N}_\mathbb{R} \rightarrow \mathcal{M}^1
\]

is not surjective in general, but its image contains \(\mathcal{M}^\text{div}\).
- Rmk. The space of not necessarily ample test configurations for \((X, L)\) defines a subset of \(\mathcal{N}_\mathbb{R}\) whose image under \(\text{MA}\) equals \(\mathcal{M}^\text{div}\).
- Define \(M(\chi) := \beta(\text{MA}(\chi))\) for \(\chi \in \mathcal{N}_\mathbb{R}\). Say \((X, L)\) is uniformly K-stable for filtrations if there exists \(\epsilon > 0\) such that \(M(\chi) \geq \epsilon \|\chi\|\)
- Cor [Li]. Divisorial stability is equivalent to uniform K-stability for filtrations.
K-stability for filtrations

- Fix an ample \mathbb{Q}-line bundle L.
- Given a filtration $\chi \in \mathcal{N}_\mathbb{R}$, define $\chi_d \in \mathcal{T}$ as the \mathbb{Z}-filtration on $R(X, dL)$ generated in degree 1 by $[\chi]$ on $H^0(X, dL)$.
- Thm. The limit $\text{MA}(\chi) := \lim_d \text{MA}(\chi_d)$ exists in \mathcal{M}^1. The resulting map
 \[\text{MA}: \mathcal{N}_\mathbb{R} \to \mathcal{M}^1 \]
 is not surjective in general, but its image contains \mathcal{M}^{div}.
- Rmk. The space of not necessarily ample test configurations for (X, L) defines a subset of $\mathcal{N}_\mathbb{R}$ whose image under MA equals \mathcal{M}^{div}.
- Define $M(\chi) := \beta(\text{MA}(\chi))$ for $\chi \in \mathcal{N}_\mathbb{R}$. Say (X, L) is uniformly K-stable for filtrations if $\exists \varepsilon > 0$ such that $M(\chi) \geq \varepsilon \|\chi\|$
- Cor [Li]. Divisorial stability is equivalent to uniform K-stability for filtrations.
- Advantage of the divisorial stability notion: the set \mathcal{M}^{div} does not depend on L.
Divisorial stability and uniform K-stability

• Again fix an ample \mathbb{Q}-line bundle L.
Divisorial stability and uniform K-stability

- Again fix an ample \(\mathbb{Q} \)-line bundle \(L \).
- Any tc \((X, L) \) for \((X, L) \) induces a divisorial measure \(\mu = \text{MA}(X, L) \in \mathcal{M}^{\text{div}} \).
Divisorial stability and uniform K-stability

• Again fix an ample \(\mathbb{Q} \)-line bundle \(L \).
• Any tc \((\mathcal{X}, L)\) for \((X, L)\) induces a divisorial measure \(\mu = MA(\mathcal{X}, L) \in \mathcal{M}^{\text{div}} \).
• As we have seen:
 · \(\|\mu\|_L = \|(\mathcal{X}, L)\| \), the minimum norm in the sense of Dervan;
 · \(\beta_L(\mu) \) is the Mabuchi functional by B–Hisamoto-J;
so divisorial stability implies uniform K-stability.
Divisorial stability and uniform K-stability

• Again fix an ample \mathbb{Q}-line bundle L.

• Any tc (X, L) for (X, L) induces a divisorial measure $\mu = MA(X, L) \in M^{\text{div}}$.

• As we have seen:
 • $\|\mu\|_{L} = \|(X, L)\|$, the minimum norm in the sense of Dervan;
 • $\beta_{L}(\mu)$ is the Mabuchi functional by B–Hisamoto-J;
so divisorial stability implies uniform K-stability.

• We conjecture that the converse holds. This would follow from:

• Q. Given a non-ample tc (X, L), let χ be the associated norms, and (χ_{d}) be the net of canonical approximants in T. Do we have $\lim_{d} \text{Ent}(MA(\chi_{d})) = \text{Ent}(MA(\chi))$?
Divisorial stability and uniform K-stability

• Again fix an ample \mathbb{Q}-line bundle L.
• Any tc (X, L) for (X, L) induces a divisorial measure $\mu = \text{MA}(X, L) \in \mathcal{M}^{\text{div}}$.
• As we have seen:

 • $\|\mu\|_L = \|(X, L)\|$, the minimum norm in the sense of Dervan;

 • $\beta_L(\mu)$ is the Mabuchi functional by B–Hisamoto-J;

so divisorial stability implies uniform K-stability.

• We conjecture that the converse holds. This would follow from:

 Entropy regularization conjecture. For every $\mu \in \mathcal{M}^{\text{div}}$ there exists a sequence (X_m, L_m) of tcs such that $\mu_m := \text{MA}(X_m, L_m)$ converges strongly to μ, and

 \[
 \lim_m \text{Ent}(\mu_m) = \text{Ent}(\mu).
 \]
Divisorial stability and uniform K-stability

• Again fix an ample \mathbb{Q}-line bundle L.
• Any tc (X, L) for (X, L) induces a divisorial measure $\mu = MA(X, L) \in M^{\text{div}}$.
• As we have seen:
 - $\|\mu\|_L = \|(X, L)\|$, the minimum norm in the sense of Dervan;
 - $\beta_L(\mu)$ is the Mabuchi functional by B–Hisamoto-J;
 so divisorial stability implies uniform K-stability.
• We conjecture that the converse holds. This would follow from:
 Entropy regularization conjecture. For every $\mu \in M^{\text{div}}$ there exists a sequence (X_m, L_m) of tcs such that $\mu_m := MA(X_m, L_m)$ converges strongly to μ, and
 $$\lim_m \text{Ent}(\mu_m) = \text{Ent}(\mu).$$
• Q. Given a non-ample tc (X, L), let χ be the associated norms, and $(\chi_d)_d$ be the net of canonical approximants in \mathcal{T}. Do we have
 $$\lim_d \text{Ent}(MA(\chi_d)) = \text{Ent}(MA(\chi))?$$
Divisorial stability and cscK metrics

- Now assume X is smooth and L ample. To summarize, we have

$$(X, L) \text{ divisorially stable } \iff (X, L) \text{ uniformly K-stable for filtrations}$$

$$(X, L) \text{ uniformly K-stable } \iff M^{\text{Arch}} \text{ coercive}$$

$\exists! \text{ cscK metric in } c_1(L)$$

Does uniform K-stability imply divisorial stability (see above)?

Does M^{Arch} being coercive imply divisorial stability?

Can we incorporate the action of a reductive group? (Work in progress.)
Divisorial stability and cscK metrics

• Now assume X is smooth and L ample. To summarize, we have

$$(X, L) \text{ divisorially stable} \iff (X, L) \text{ uniformly K-stable for filtrations}$$

$$(X, L) \text{ uniformly K-stable} \iff M^{\text{Arch}} \text{ coercive}$$

$\exists! \text{ cscK metric in } c_1(L)$$

• Q. Does uniform K-stability imply divisorial stability (see above)?

• Q. Does M^{Arch} being coercive imply divisorial stability?

• Q. Can we incorporate the action of a reductive group? (Work in progress.)
Divisorial stability and cscK metrics

- Now assume X is smooth and L ample. To summarize, we have

$$(X, L) \text{ divisorially stable} \leftrightarrow B_{J} \iff (X, L) \text{ uniformly K-stable for filtrations}$$

$$(X, L) \text{ uniformly K-stable} \leftrightarrow B_{HJ} \iff M_{\text{Arch}} \text{ coercive}$$

$\exists ! \text{ cscK metric in } c_{1}(L)$$

- **Q.** Does uniform K-stability imply divisorial stability (see above)?
- **Q.** Does M_{Arch} being coercive imply divisorial stability?
Divisorial stability and cscK metrics

- Now assume X is smooth and L ample. To summarize, we have

$$(X, L) \text{ divisorially stable } \iff (X, L) \text{ uniformly K-stable for filtrations}$$

$$(X, L) \text{ uniformly K-stable } \iff M^{\text{Arch}} \text{ coercive}$$

$$\exists! \text{ cscK metric in } c_1(L)$$

- Q. Does uniform K-stability imply divisorial stability (see above)?
- Q. Does M^{Arch} being coercive imply divisorial stability?
- Q. Can we incorporate the action of a reductive group? (Work in progress.)
THANK YOU!