An embedding problem for closed 3-forms on 5-manifolds

Fabian Lehmann

SCGP

09/08/2022
Let Z be a complex 3-fold with holomorphic volume form $\Psi + i \hat{\Psi}$. Hitchin (2000) gave a description of this geometric structure purely in terms of the real part Ψ.

- Ψ is a stable 3-form (like the 3-form defining a G_2-structure): at each tangent space, Ψ has an open orbit under the action of $GL(6, \mathbb{R})$ with stabiliser $SL(3, \mathbb{C})$.

[Note: The text is a bit cut off, but the extracted content is readable and does not require any hallucination.]
Let Z be a complex 3-fold with holomorphic volume form $\Psi + i\hat{\Psi}$. Hitchin (2000) gave a description of this geometric structure purely in terms of the real part Ψ.

- Ψ is a stable 3-form (like the 3-form defining a G_2-structure): at each tangent space, Ψ has an open orbit under the action of $\text{GL}(6, \mathbb{R})$ with stabiliser $\text{SL}(3, \mathbb{C})$.
- The imaginary part $\hat{\Psi}$ is completely determined by Ψ.
Let Z be a complex 3-fold with holomorphic volume form $\Psi + i\hat{\Psi}$. Hitchin (2000) gave a description of this geometric structure purely in terms of the real part Ψ.

- Ψ is a stable 3-form (like the 3-form defining a G_2-structure): at each tangent space, Ψ has an open orbit under the action of $GL(6, \mathbb{R})$ with stabiliser $SL(3, \mathbb{C})$.
- The imaginary part $\hat{\Psi}$ is completely determined by Ψ.
- Given $d\Psi = 0$, the condition $d\hat{\Psi} = 0$ means that Ψ is a critical point in its cohomology class for a certain functional on 3-forms.

On a 7-manifold with boundary a G_2-structure ϕ induces a stable 3-form on the boundary. What is the structure inherited by the boundary ∂Z (or more generally a hypersurface $M \subset Z$) of a complex 3-fold with holomorphic volume form $\Psi + i\hat{\Psi}$?

The restriction of Ψ induces a closed 3-form on a real hypersurface $M \subset Z$.

Fabian Lehmann (SCGP)

An embedding problem for closed 3-forms on 5-manifolds

On a 7-manifold with boundary a G_2-structure ϕ induces a stable 3-form on the boundary.

On a 7-manifold with boundary a G_2-structure ϕ induces a stable 3-form on the boundary.

What is the structure inherited by the boundary ∂Z (or more generally a hypersurface $M \subset Z$) of a complex 3-fold with holomorphic volume form $\Psi + i\hat{\Psi}$?

On a 7-manifold with boundary a G_2-structure ϕ induces a stable 3-form on the boundary.

What is the structure inherited by the boundary ∂Z (or more generally a hypersurface $M \subset Z$) of a complex 3-fold with holomorphic volume form $\Psi + i\hat{\Psi}$?

The restriction of Ψ induces a closed 3-form on a real hypersurface $M \subset Z$.
This leads us to consider the two questions:

1. What is the structure induced on a 5-manifold by a closed 3-form ψ?
2. Given a closed 3-form ψ on M, can we find an embedding $F: M \rightarrow Z$ such that $F^* \Psi = \psi$ ("F realises ψ")?
This leads us to consider the two questions:

- What is the structure induced on a 5-manifold by a closed 3-form ψ?
This leads us to consider the two questions:

- What is the structure induced on a 5-manifold by a closed 3-form ψ?
- Given a closed 3-form ψ on M, can we find an embedding $F : M \rightarrow Z$ such that $F^*\Psi = \psi$ (“F realises ψ”)?
In the more classical setting where the ambient manifold carries merely a complex structure (in any dimension), a real hypersurface inherits a CR-structure.
In the more classical setting where the ambient manifold carries merely a complex structure (in any dimension), a real hypersurface inherits a CR-structure. One can make sense of an “abstract” CR-structure on an odd-dimensional manifold without reference to an ambient space.
In the more classical setting where the ambient manifold carries merely a complex structure (in any dimension), a real hypersurface inherits a CR-structure.

One can make sense of an “abstract” CR-structure on an odd-dimensional manifold without reference to an ambient space.

This gave rise to the influential embedding problem in CR-geometry: Which abstract CR-structures can be realised by an embedding?
A closed 3-form in five dimensions locally depends on
\[\dim \Lambda^2 - \dim \Lambda^1 + \dim \Lambda^0 = 10 - 5 + 1 = 6 \]
functions:
- \(\psi = d\tau \) for a 2-form \(\tau \) ⇒ add \(\dim \Lambda^2 \).
- \(\tau + d\eta \) gives same 3-form ⇒ subtract \(\dim \Lambda^1 \).
- If \(\eta = df \), \(\tau \) does not change ⇒ add \(\dim \Lambda^0 \).
A closed 3-form in five dimensions locally depends on

$$\dim \Lambda^2 - \dim \Lambda^1 + \dim \Lambda^0 = 10 - 5 + 1 = 6$$

functions:
- $\psi = d\tau$ for a 2-form $\tau \Rightarrow$ add $\dim \Lambda^2$.
- $\tau + d\eta$ gives same 3-form \Rightarrow subtract $\dim \Lambda^1$.
- If $\eta = df$, τ does not change \Rightarrow add $\dim \Lambda^0$.

So up to diffeomorphism a closed 3-form depends on $6 - 5 = 1$ function.
Analogy with Riemannian metrics on surfaces

A closed 3-form in five dimensions locally depends on

\[\dim \Lambda^2 - \dim \Lambda^1 + \dim \Lambda^0 = 10 - 5 + 1 = 6 \]

functions:

- \(\psi = d\tau \) for a 2-form \(\tau \) \(\Rightarrow \) add \(\dim \Lambda^2 \).
- \(\tau + d\eta \) gives same 3-form \(\Rightarrow \) subtract \(\dim \Lambda^1 \).
- If \(\eta = df \), \(\tau \) does not change \(\Rightarrow \) add \(\dim \Lambda^0 \).

So up to diffeomorphism a closed 3-form depends on \(6 - 5 = 1 \) function.
A similar count for Riemannian metrics on 2-dimensional manifolds gives \(3 - 2 = 1 \).
Weyl embedding problem

- Weyl (1915): Given a Riemannian metric on S^2 with positive Gaussian curvature, is there an isometric embedding into \mathbb{R}^3? Proved by Nirenberg and Pogorelov.
Weyl embedding problem

- Weyl (1915): Given a Riemannian metric on S^2 with positive Gaussian curvature, is there an isometric embedding into \mathbb{R}^3? Proved by Nirenberg and Pogorelov.
- Positive Gaussian curvature means that the image $F(S^2)$ bounds a strongly convex subset of \mathbb{R}^3.

Convexity of $\Sigma \subset \mathbb{C}^n$ is not preserved by biholomorphisms. A useful condition in the theory of several complex variables is the weaker notion of (strong) pseudo-convexity.
Weyl embedding problem

- Weyl (1915): Given a Riemannian metric on S^2 with positive Gaussian curvature, is there an isometric embedding into \mathbb{R}^3? Proved by Nirenberg and Pogorelov.
- Positive Gaussian curvature means that the image $F(S^2)$ bounds a strongly convex subset of \mathbb{R}^3.
- Convexity of $\Sigma \subset \mathbb{C}^n$ is not preserved by biholomorphisms.
Weyl embedding problem

- Weyl (1915): Given a Riemannian metric on S^2 with positive Gaussian curvature, is there an isometric embedding into \mathbb{R}^3? Proved by Nirenberg and Pogorelov.

- Positive Gaussian curvature means that the image $F(S^2)$ bounds a strongly convex subset of \mathbb{R}^3.

- Convexity of $\Sigma \subset \mathbb{C}^n$ is not preserved by biholomorphisms.

- A useful condition in the theory of several complex variables is the weaker notion of (strong) pseudo-convexity.
Definition

$\psi \in \Omega^3(M)$ is called strongly pseudoconvex if it satisfies the following three properties:

1. The skew-symmetric bilinear form

\[
\Lambda^1 \times \Lambda^1 \rightarrow \Lambda^5, \quad (\lambda, \eta) \mapsto \lambda \wedge \eta \wedge \psi
\]

has maximal rank, i.e. 4, at each point. This defines a rank 4 subbundle $H \subset TM$.

2. Let θ be a 1-form which at each point spans the 1-dimensional kernel of (0.1). Then

$\psi = \theta \wedge \alpha$ for some 2-form α and H is the kernel of θ.

In particular, $\theta \wedge (d\theta)^2$ is a positive multiple of $\theta \wedge \alpha^2$. Therefore, $d\theta$ is non-degenerate on H, which means that H is a contact structure.
Strongly pseudoconvex 3-forms in dimension five

Definition

$\psi \in \Omega^3(M)$ is called strongly pseudoconvex if it satisfies the following three properties:

- The skew-symmetric bilinear form

$$\Lambda^1 \times \Lambda^1 \to \Lambda^5, \quad (\lambda, \eta) \mapsto \lambda \wedge \eta \wedge \psi$$ \hspace{1cm} (0.1)

has maximal rank, i.e. 4, at each point. This defines a rank 4 subbundle $H \subset TM$.

Let θ be a 1-form which at each point spans the 1-dimensional kernel of (0.1). Then $\psi = \theta \wedge \alpha$ for some 2-form α and H is the kernel of θ.

- $\theta \wedge \alpha^2$ does not vanish anywhere on M.

Strongly pseudoconvex 3-forms in dimension five

Definition

$\psi \in \Omega^3(M)$ is called strongly pseudoconvex if it satisfies the following three properties:

- The skew-symmetric bilinear form

 \[\Lambda^1 \times \Lambda^1 \to \Lambda^5, \quad (\lambda, \eta) \mapsto \lambda \wedge \eta \wedge \psi \]

 has maximal rank, i.e. 4, at each point. This defines a rank 4 subbundle $H \subset TM$.

- Let θ be a 1-form which at each point spans the 1-dimensional kernel of (0.1). Then $\psi = \theta \wedge \alpha$ for some 2-form α and H is the kernel of θ.

- $\theta \wedge \alpha^2$ does not vanish anywhere on M.

- $\theta \wedge (d\theta)^2$ is a positive multiple of $\theta \wedge \alpha^2$. In particular, $d\theta$ is non-degenerate on H, which means that H is a contact structure.
Normalisation

The decomposition $\psi = \theta \wedge \alpha$ is not unique. We can

- replace θ by $f\theta$ and α by $f^{-1}\alpha$, where f is a non-vanishing function.

Normalise θ by scaling by some function f such that $\theta \wedge \alpha^2 = \theta \wedge (d\theta)^2$. This fixes preferred contact 1-form θ and Reeb vector field v, which is defined by $\theta(v) = 1$ and $v \lrcorner d\theta = 0$.

This gives decomposition $TM = \mathbb{R}v \oplus H$ and $\Omega^p(M) = \theta \wedge \Omega^{p-1}H \oplus \Omega^pH$, where $\gamma \in \Omega^pH$ iff $v \lrcorner \gamma = 0$.

We have $\omega := d\theta \in \Omega^2H$. Normalise α by requiring $\alpha \in \Omega^2H$.

Fabian Lehmann (SCGP)
An embedding problem for closed 3-forms on 5-manifolds
09/08/2022
Normalisation

The decomposition $\psi = \theta \wedge \alpha$ is not unique. We can

- replace θ by $f\theta$ and α by $f^{-1}\alpha$, where f is a non-vanishing function.
- add $\theta \wedge \chi, \chi \in \Omega^1(M)$, to α.

Normalise θ by scaling by some function f such that $\theta \wedge \alpha^2 = \theta \wedge (d\theta)^2$. This fixes preferred contact 1-form θ and Reeb vector field v, which is defined by $\theta(v) = 1$ and $v \llcorner d\theta = 0$.

This gives decomposition $TM = \mathbb{R}v \oplus H$ and $\Omega^p(M) = \theta \wedge \Omega^p - H \oplus \Omega^p H$, where $\gamma \in \Omega^p H$ iff $v \llcorner \gamma = 0$.

We have $\omega := d\theta \in \Omega^2 H$. Normalise α by requiring $\alpha \in \Omega^2 H$.
Normalisation

The decomposition $\psi = \theta \wedge \alpha$ is not unique. We can

- replace θ by $f\theta$ and α by $f^{-1}\alpha$, where f is a non-vanishing function.
- add $\theta \wedge \chi$, $\chi \in \Omega^1(M)$, to α.

Normalise θ by scaling by some function f such that $\theta \wedge \alpha^2 = \theta \wedge (d\theta)^2$. This fixes preferred contact 1-form θ and Reeb vector field ν, which is defined by $\theta(\nu) = 1$ and $\nu \llcorner d\theta = 0$.
Normalisation

The decomposition $\psi = \theta \wedge \alpha$ is not unique. We can
- replace θ by $f\theta$ and α by $f^{-1}\alpha$, where f is a non-vanishing function.
- add $\theta \wedge \chi$, $\chi \in \Omega^1(M)$, to α.

Normalise θ by scaling by some function f such that $\theta \wedge \alpha^2 = \theta \wedge (d\theta)^2$. This fixes preferred contact 1-form θ and Reeb vector field v, which is defined by $\theta(v) = 1$ and $v \cdot d\theta = 0$. This gives decomposition

$$TM = \mathbb{R}v \oplus H$$

and

$$\Omega^p(M) = \theta \wedge \Omega^{p-1}_H \oplus \Omega^p_H,$$

where $\gamma \in \Omega^p_H$ iff $v \cdot \gamma = 0$.
Normalisation

The decomposition $\psi = \theta \wedge \alpha$ is not unique. We can

- replace θ by $f\theta$ and α by $f^{-1}\alpha$, where f is a non-vanishing function.
- add $\theta \wedge \chi, \chi \in \Omega^1(M)$, to α.

Normalise θ by scaling by some function f such that $\theta \wedge \alpha^2 = \theta \wedge (d\theta)^2$. This fixes preferred contact 1-form θ and Reeb vector field ν, which is defined by $\theta(\nu) = 1$ and $\nu \perp d\theta = 0$. This gives decomposition

$$TM = \mathbb{R}\nu \oplus H$$

and

$$\Omega^p(M) = \theta \wedge \Omega^{p-1}_H \oplus \Omega^p_H,$$

where $\gamma \in \Omega^p_H$ iff $\nu \perp \gamma = 0$.

We have $\omega := d\theta \in \Omega^2_H$. Normalise α by requiring $\alpha \in \Omega^2_H$.
The Lie derivative L_v preserves the decomposition and the exterior derivative d splits on Ω^p_H as

$$d_H : \Omega^p_H \to \Omega^{p+1}_H$$

and

$$\theta \wedge L_v : \Omega^p_H \to \theta \wedge \Omega^p_H.$$
$d\psi = 0$ is equivalent to

$$\omega \wedge \alpha = \theta \wedge d\alpha,$$

which is equivalent to

$$\omega \wedge \alpha = 0, \quad d_H \alpha = 0.$$

Normalisation gives $\omega^2 = \alpha^2$. Thus $(H, \omega + i\alpha)$ is an integrable CR-structure. $(M, v, H, \omega, \alpha)$ is an $\text{SL}(2, \mathbb{C})$-structure. Contact analogue of complex 2-fold with trivial canonical bundle.
Suppose ψ induced by embedding $F : M \to (Z, \Psi + i\Psi)$. Then $\hat{\psi} = F^* \hat{\Psi}$ decomposes as $\theta \wedge \beta$, where $\beta \in \Omega^2_H$ satisfies

$$\omega \wedge \beta = 0, \quad \alpha \wedge \beta = 0, \quad \beta^2 = \alpha^2 = \omega^2, \quad d_H \beta = 0.$$
Suppose ψ induced by embedding $F : M \to (Z, \Psi + i\hat{\Psi})$. Then $\hat{\psi} = F^* \hat{\Psi}$ decomposes as $\theta \wedge \beta$, where $\beta \in \Omega^2_H$ satisfies

$$\omega \wedge \beta = 0, \quad \alpha \wedge \beta = 0, \quad \beta^2 = \alpha^2 = \omega^2, \quad d_H \beta = 0.$$

Thus $(M, \nu, H, \omega, \alpha, \beta)$ is a nearly hypo $SU(2)$-structure (contact version of hyperkähler 4-manifold).
Suppose ψ induced by embedding $F : M \to (Z, \Psi + i\hat{\Psi})$. Then $\hat{\psi} = F^* \hat{\Psi}$ decomposes as $\theta \wedge \beta$, where $\beta \in \Omega^2_H$ satisfies

$$\omega \wedge \beta = 0, \quad \alpha \wedge \beta = 0, \quad \beta^2 = \alpha^2 = \omega^2, \quad d_H \beta = 0.$$

Thus $(M, \nu, H, \omega, \alpha, \beta)$ is a nearly hypo SU(2)-structure (contact version of hyperkähler 4-manifold).

Conti–Salamon (2005) have studied those in the context of real hypersurfaces in torsion-free SU(3)-manifolds.
We can think of the realisation problem for a strongly pseudoconvex 3-form ψ as consisting of two parts:

Problem 1: Find $\beta \in \Omega^2_{\text{orth}}$ orthogonal to ω and α, and of unit length, which solves $dH\beta = 0$.

This problem can be seen as a contact version of the Calabi problem in dimension four.

Problem 2: Find an embedding for the strongly pseudoconvex CR-manifold $(M, H, \alpha + i\beta)$.
We can think of the realisation problem for a strongly pseudoconvex 3-form ψ as consisting of two parts:

Problem 1: Find $\beta \in \Omega^2_H$ orthogonal to ω and α, and of unit length, which solves $d_H \beta = 0$. This problem can be seen as a contact version of the Calabi problem in dimension four.
We can think of the realisation problem for a strongly pseudoconvex 3-form ψ as consisting of two parts:

Problem 1: Find $\beta \in \Omega^2_H$ orthogonal to ω and α, and of unit length, which solves $d_H\beta = 0$. This problem can be seen as a contact version of the Calabi problem in dimension four.

Problem 2: Find an embedding for the strongly pseudoconvex CR-manifold $(M, H, \alpha + i\beta)$.
Given ψ, an embedding $F : M \hookrightarrow Z$ with $F^*\Psi = \psi$ is in general not unique.
Given ψ, an embedding $F : M \hookrightarrow Z$ with $F^*\Psi = \psi$ is in general not unique.

If $F(M)$ is the boundary of a domain $U \subset Z$, and if $\Phi : \bar{U} \rightarrow Z$ is a diffeomorphism to its image which is holomorphic and satisfies $\Phi^*\Psi = \Psi$, then $\Phi \circ F$ is another embedding which realises ψ.

If for example the ambient space is C^3, then the restriction of every element in $SL(3, C)$ is such a diffeomorphism.
Given ψ, an embedding $F : M \hookrightarrow Z$ with $F^*\Psi = \psi$ is in general not unique.

If $F(M)$ is the boundary of a domain $U \subset Z$, and if $\Phi : \bar{U} \to Z$ is a diffeomorphism to its image which is holomorphic and satisfies $\Phi^*\Psi = \Psi$, then $\Phi \circ F$ is another embedding which realises ψ.

If for example the ambient space is \mathbb{C}^3, then the restriction of every element in $\text{SL}(3, \mathbb{C})$ is such a diffeomorphism.
Given ψ, an embedding $F : M \hookrightarrow Z$ with $F^*\Psi = \psi$ is in general not unique.

If $F(M)$ is the boundary of a domain $U \subset Z$, and if $\Phi : \bar{U} \to Z$ is a diffeomorphism to its image which is holomorphic and satisfies $\Phi^*\Psi = \Psi$, then $\Phi \circ F$ is another embedding which realises ψ.

If for example the ambient space is \mathbb{C}^3, then the restriction of every element in $\text{SL}(3, \mathbb{C})$ is such a diffeomorphism.

Is embedding unique up to such diffeomorphisms?
For an $SU(2)$-structure as above (ω, α, β) is an orthonormal triple for the wedge product pairing

$$(\sigma \cdot \tau) \text{Vol}_H = \sigma \wedge \tau,$$

with volume form $\text{Vol}_H = \frac{1}{2} \omega^2$ on H.

(anti)-self-dual 2-forms
(Anti)-self-dual 2-forms

For an $SU(2)$-structure as above (ω, α, β) is an orthonormal triple for the wedge product pairing

$$(\sigma \cdot \tau) \text{Vol}_H = \sigma \wedge \tau,$$

with volume form $\text{Vol}_H = \frac{1}{2} \omega^2$ on H. Thus they define a metric on H with splitting

$$\Lambda^2_H = \Lambda^+_H \oplus \Lambda^-_H$$

into self-dual and anti-self-dual 2-forms on H.
(Anti)-self-dual 2-forms

For an $SU(2)$-structure as above (ω, α, β) is an orthonormal triple for the wedge product pairing

$$(\sigma \cdot \tau) \text{Vol}_H = \sigma \wedge \tau,$$

with volume form $\text{Vol}_H = \frac{1}{2} \omega^2$ on H. Thus they define a metric on H with splitting

$$\Lambda^2_H = \Lambda^+_H \oplus \Lambda^-_H$$

into self-dual and anti-self-dual 2-forms on H.

Set

$$\mathcal{H} = \{ \sigma \in \Omega^-_H : d_H \sigma = 0 \}.$$
Theorem (Donaldson-L., 2022)

Let \((v, H, \omega, \alpha, \beta)\) be a nearly hypo SU(2)-structure on a closed 5-manifold with \(H^3(M, \mathbb{R}) = 0\).
Theorem (Donaldson-L., 2022)

Let \((v, H, \omega, \alpha, \beta)\) be a nearly hypo SU(2)-structure on a closed 5-manifold with \(H^3(M, \mathbb{R}) = 0\).

- The space \(\mathcal{H}\) is finite dimensional.
Results

Theorem (Donaldson-L., 2022)

Let \((v, H, \omega, \alpha, \beta)\) be a nearly hypo SU(2)-structure on a closed 5-manifold with \(H^3(M, \mathbb{R}) = 0\).

- The space \(\mathcal{H}\) is finite dimensional.
- Suppose the structure is induced by an embedding \(F : M \hookrightarrow Z\) and \(\mathcal{H} = 0\). Then all closed 3-forms \(\tilde{\psi}\) sufficiently close to \(\psi = F^*\Psi\) can be realised by an embedding \(\tilde{F}\) close to \(F\). If the ambient space is \(Z = \mathbb{C}^3\), then \(\tilde{F}\) in a neighbourhood of \(F\) is unique up to holomorphic diffeomorphisms as above.
Theorem (Donaldson-L., 2022)

Let $(v, H, \omega, \alpha, \beta)$ be a nearly hypo SU(2)-structure on a closed 5-manifold with $H^3(M, \mathbb{R}) = 0$.

- The space \mathcal{H} is finite dimensional.
- Suppose the structure is induced by an embedding $F : M \hookrightarrow Z$ and $\mathcal{H} = 0$. Then all closed 3-forms $\tilde{\psi}$ sufficiently close to $\psi = F^*\Psi$ can be realised by an embedding \tilde{F} close to F. If the ambient space is $Z = \mathbb{C}^3$, then \tilde{F} in a neighbourhood of F is unique up to holomorphic diffeomorphisms as above.
- If the SU(2)-structure is Sasaki–Einstein and Z is Stein, then $\mathcal{H} = 0$. In particular this is true for the standard embedding $S^5 \hookrightarrow \mathbb{C}^3$.
Linearised problem

Denote by $\mathcal{E}(M, Z)$ set of smooth embeddings of M into Z.
Denote by $\mathcal{E}(M, Z)$ set of smooth embeddings of M into Z.

Is the map

$$P : \mathcal{E}(M, Z) \to d\Omega^2(M),$$

$$F \mapsto F^*\psi$$

surjective onto open subset of strongly pseudoconvex forms?
Denote by $\mathcal{E}(M, Z)$ set of smooth embeddings of M into Z.

Is the map

$$P : \mathcal{E}(M, Z) \to d\Omega^2(M),$$

$$F \mapsto F^*\psi$$

surjective onto open subset of strongly pseudoconvex forms?

Linearisation at F:

$$DP(F) : C^\infty(M, F^*TZ) \to d\Omega^2(M),$$

$$V \mapsto L_V\psi = d(V \psi).$$
We have

\[F^*TZ = \mathbb{R}v \oplus \mathbb{R}Iv \oplus H, \]

where \(I \) is complex structure of ambient space.
We have

$$F^* TZ = \mathbb{R}v \oplus \mathbb{R}lv \oplus H,$$

where l is complex structure of ambient space.

Define

$$K(F) : C^\infty(M) \oplus C^\infty(M) \oplus C^\infty(M, H) \to \Omega^2(M)
\quad (f, g, w) \mapsto (fv + glv + w) \psi = f\alpha + g\beta + (w\alpha) \wedge \theta.$$
We have

\[F^* T_Z = \mathbb{R} v \oplus \mathbb{R} I v \oplus H, \]

where \(I \) is complex structure of ambient space.

Define

\[K(F) : \mathcal{C}^\infty(M) \oplus \mathcal{C}^\infty(M) \oplus \mathcal{C}^\infty(M, H) \rightarrow \Omega^2(M) \]

\[(f, g, w) \mapsto (fv + glv + w) \downarrow \psi = f \alpha + g \beta + (w \downarrow \alpha) \wedge \theta. \]

Then \(DP(F) = d \circ K(F) \). Thus \(DP(F) \) is surjective onto \(d\Omega^2(M) \) iff

\[\text{im} K(F) = \Gamma(\text{span}\{\alpha, \beta\} \oplus \Lambda^1_H \wedge \theta) = \Omega^2(M)/d\Omega^1(M). \]
Solving linearised problem

- Given $\sigma \in \Omega^2(M)$, we need to add an exact 2-form to eliminate the component of σ in $\mathbb{R}\omega \oplus \Lambda_H^-$.
Solving linearised problem

- Given $\sigma \in \Omega^2(M)$, we need to add an exact 2-form to eliminate the component of σ in $\mathbb{R}\omega \oplus \Lambda^-_H$.
- Decompose

$$\sigma = \sigma^+ + \sigma^- + \chi \wedge \theta,$$

where $\sigma^{\pm} \in \Omega^\pm_H$ and $\chi \in \Omega^1_H$.

Fabian Lehmann (SCGP)
Solving linearised problem

- Given $\sigma \in \Omega^2(M)$, we need to add an exact 2-form to eliminate the component of σ in $\mathbb{R}\omega \oplus \Lambda_H^-$.
- Decompose

$$\sigma = \sigma^+ + \sigma^- + \chi \wedge \theta,$$

where $\sigma^\pm \in \Omega^\pm_H$ and $\chi \in \Omega^1_H$.
- To eliminate σ^-, we need to solve the equation

$$d^-_H \eta = \sigma^-,$$

where $d^-_H = \pi^- \circ d_H : \Omega^1_H \to \Omega^-_H$.

Solving the linearised problem

- Suppose $\eta \in \Omega^1_H$ solves

\[
d \eta = \sigma.
\]
Solving the linearised problem

- Suppose $\eta \in \Omega^1_H$ solves
 \[
 d^- H \eta = \sigma^-.
 \]

- Then
 \[
 \sigma - d \eta = \tilde{\sigma}^+ + \chi' \wedge \theta = h_\alpha \alpha + h_\beta \beta + h_\omega \omega + \chi' \wedge \theta.
 \]
Solving the linearised problem

Suppose $\eta \in \Omega^1_H$ solves

$$d_H^- \eta = \sigma^-.$$

Then

$$\sigma - d\eta = \tilde{\sigma}^+ + \chi' \wedge \theta = h_\alpha \alpha + h_\beta \beta + h_\omega \omega + \chi' \wedge \theta.$$

Then

$$\sigma - d\eta - d(h_\omega \theta) = h_\alpha \alpha + h_\beta \beta + \chi'' \wedge \theta \in \text{im}K(F).$$
The d^{-}_H-equation

- We can solve linearised problem iff

$$d^{-}_H : \Omega^1_H \to \Omega^{-}_H$$

is surjective.
We can solve linearised problem iff

\[d_H^- : \Omega^1_H \to \Omega^-_H \]

is surjective.

We have

\[(d_H^-)^* = d^*_H = -\ast_H d_H \ast_H. \]
The d_H^--equation

- We can solve linearised problem iff

$$d_H^- : \Omega_H^1 \to \Omega_H^-$$

is surjective.

- We have

$$(d_H^-)^* = d_H^* = - *_H d_H *_H.$$

- Thus \(\text{coker } d_H^- = \mathcal{H} = \{ \sigma \in \Omega_H^- : d_H \sigma = 0 \}.$$
In 4-dimensional Riemannian geometry:

\[\{ \sigma \in \Omega^- : d\sigma = 0 \} = \{ \sigma \in \Omega^- : d\sigma = 0, d^* \sigma = 0 \} = \ker \Delta_{|\Omega^-}. \]

Laplace operator \(\Delta_{|\Omega^-} \) elliptic, so kernel finite dimensional.
In 4-dimensional Riemannian geometry:

$$\{ \sigma \in \Omega^- : d\sigma = 0 \} = \{ \sigma \in \Omega^- : d\sigma = 0, d^*\sigma = 0 \} = \ker \Delta|_{\Omega^-}.$$

Laplace operator $\Delta|_{\Omega^-}$ elliptic, so kernel finite dimensional.

Set $\Delta_H = d_H d_H^* + d_H^* d_H$ and $\Box_H = d_H^* (d_H^*)^*$. Then $\Box_H = \frac{1}{2} \Delta_H|_{\Omega_H^-}$.

□H is not elliptic! Missing derivatives in v direction. In particular, no coercive estimate of the form $\|\sigma\|_2 \lesssim (\Box_H \sigma, \sigma) + \|\sigma\|_2$.
In 4-dimensional Riemannian geometry:

\[\{ \sigma \in \Omega^- : d\sigma = 0 \} = \{ \sigma \in \Omega^- : d\sigma = 0, d^* \sigma = 0 \} = \ker \Delta|_{\Omega^-}. \]

Laplace operator \(\Delta|_{\Omega^-} \) elliptic, so kernel finite dimensional.

- Set \(\Delta_H = d_H d_H^* + d_H^* d_H \) and \(\Box_H = d_H^-(d_H^-)^* \). Then \(\Box_H = \frac{1}{2} \Delta_H|_{\Omega^-_H}. \)

- \(\Box_H \) is not elliptic! Missing derivatives in \(\nu \) direction. In particular, no coercive estimate of the form

\[\|\sigma\|_{1}^2 \lesssim (\Box_H \sigma, \sigma) + \|\sigma\|^2. \]
Sub-ellipticity

- $g = \theta^2 + g_H$ is Riemannian metric on M. Levi-Civita connection does not preserve H.

At the cost of introducing torsion one can find partial covariant derivative ∇ which looks like a Levi-Civita connection for g_H:

∇ preserves H, $\nabla g_H = 0$ and torsion has no component in $\Lambda^2 H \otimes H$.

Then

$\Delta H = \nabla^* H \nabla H + I \circ \nabla v + R \nabla$

where I is CR-structure given by $\alpha + i \beta$.

v is locally commutator of sections of H (so two H-derivatives!). This gives "1/2"-estimate

$\|\sigma\|_2^{1/2} \lesssim (\nabla^* H \nabla H \sigma, \sigma) + \|\sigma\|_2$.
Sub-ellipticity

- $g = \theta^2 + g_H$ is Riemannian metric on M. Levi-Civita connection does not preserve H.
- At the cost of introducing torsion one can find partial covariant derivative ∇ which looks like a Levi-Civita connection for g_H: ∇ preserves H, $\nabla g_H = 0$ and torsion has no component in $\Lambda^2_H \otimes H$.
Sub-ellipticity

- $g = \theta^2 + g_H$ is Riemannian metric on M. Levi-Civita connection does not preserve H.
- At the cost of introducing torsion one can find partial covariant derivative ∇ which looks like a Levi-Civita connection for g_H: ∇ preserves H, $\nabla g_H = 0$ and torsion has no component in $\Lambda^2_H \otimes H$.
- Then

$$\Delta_H = \nabla^*_H \nabla_H + I \circ \nabla_v + R^{\nabla}$$

$$= - (\nabla^2 e_1 + \cdots + \nabla^2 e_4) + I \circ \nabla_v + R^{\nabla},$$

where I is CR-structure given by $\alpha + i\beta$.
Sub-ellipticity

- $g = \theta^2 + g_H$ is Riemannian metric on M. Levi-Civita connection does not preserve H.
- At the cost of introducing torsion one can find partial covariant derivative ∇ which looks like a Levi-Civita connection for g_H: ∇ preserves H, $\nabla g_H = 0$ and torsion has no component in $\Lambda^2_H \otimes H$.
- Then

\[
\Delta_H = \nabla^* H \nabla_H + I \circ \nabla_\nu + R^\nabla
= -(\nabla^2_{e_1} + \cdots + \nabla^2_{e_4}) + I \circ \nabla_\nu + R^\nabla,
\]

where I is CR-structure given by $\alpha + i\beta$.
- ν is locally commutator of sections of H (so two H-derivatives!). This gives “$1/2$”-estimate

\[
\|\sigma\|^{2^{1/2}} \lesssim (\nabla^* H \nabla_H \sigma, \sigma) + \|\sigma\|^2.
\]
By choice of the connection, ∇_v preserves Ω_H^-. Thinking of Λ^2_H as skew-symmetric endomorphisms of H, the action of I is the commutator $[I, \cdot]$. Every orientation preserving element in $\mathfrak{so}(H)$ commutes with every orientation reversing element if $\mathfrak{so}(H)$. Thus $I \circ \nabla_v = 0$ on Ω_H^-.

\Box is sub-elliptic and by the theory of sub-elliptic operators $H = \ker \Box_H$ is finite-dimensional.

On Ω_H^+, Δ_H is not sub-elliptic.
By choice of the connection, ∇_v preserves Ω_H^-. Thinking of Λ^2_H is as skew-symmetric endomorphisms of H, the action of I is the commutator $[I, \cdot]$. Every orientation preserving element in $\mathfrak{so}(H)$ commutes with every orientation reversing element if $\mathfrak{so}(H)$. Thus $I \circ \nabla_v = 0$ on Ω_H^-. Thus

$$\|\sigma\|_2 \lesssim (\square_H \sigma, \sigma) + \|\sigma\|^2.$$

\square_H is sub-elliptic and by the theory of sub-elliptic operators $\mathcal{H} = \ker \square_H$ is finite-dimensional.
By choice of the connection, ∇_v preserves Ω^-_H. Thinking of Λ^2_H is as skew-symmetric endomorphisms of H, the action of I is the commutator $[I, \cdot]$. Every orientation preserving element in $\mathfrak{so}(H)$ commutes with every orientation reversing element if $\mathfrak{so}(H)$. Thus $I \circ \nabla_v = 0$ on Ω^-_H.

Thus

$$\|\sigma\|_2^2 \lesssim (\Box_H \sigma, \sigma) + \|\sigma\|^2.$$

\Box_H is sub-elliptic and by the theory of sub-elliptic operators $\mathcal{H} = \ker \Box_H$ is finite-dimensional.

On Ω^+_H, Δ_H is not sub-elliptic.
Nash–Moser–Hamilton theory

Hamilton (1977) worked on deformation theory of complex manifolds with boundary. His uniform higher order estimates can be applied to our uniform “1/2”-estimate to prove that $H = 0$ is an open condition, apply the Nash–Moser inverse function theorem.
Hamilton (1977) worked on deformation theory of complex manifolds with boundary. His uniform higher order estimates can be applied to our uniform “1/2”-estimate to

- prove that $\mathcal{H} = 0$ is an open condition,
Hamilton (1977) worked on deformation theory of complex manifolds with boundary. His uniform higher order estimates can be applied to our uniform “1/2”-estimate to

- prove that $\mathcal{H} = 0$ is an open condition,
- apply the Nash–Moser inverse function theorem.
On a CR-manifold one has a \(\bar{\partial}_b \)-operator which is the abstraction of the restriction of \(\bar{\partial} \).

\[\Lambda_H^- \subset \Lambda^{1,1}_1 M. \]

If \(M \subset Z \) is strongly pseudoconvex and \(Z \) is Stein, then

\[\{ \sigma \in \Omega^{1,1}_1 : \bar{\partial}_b \sigma = 0, \bar{\partial}^*_b \sigma = 0 \} = 0. \]

\(d_H \sigma = 0 \) for \(\sigma \in \Omega^-_H \) always implies \(\bar{\partial}^*_b \sigma = 0. \)

If the nearly hypo structure is Sasaki–Einstein (essentially means \(\beta = L_\nu \alpha \)), then \(\bar{\partial}_b \sigma = 0 \) if \(\sigma \in \mathcal{H} \).
Thank you!